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THE MELTDOWN PATHWAY

Abstract

Autistic meltdowns are involuntary fits of intense frustration, rage, and often physical
violence elicited by sensory and cognitive stressors easily tolerated by neurotypicals. While
nearly 70% of autistic individuals display the “crisis behaviors” associated with meltdowns, the
neural mechanisms that underlie this maladaptive response are not yet well understood. This has
thus far hampered progress towards a dedicated therapeutic intervention—beyond traditional
medications—that limits their frequency and severity. Here, we aim to initiate an
interdisciplinary dialogue on the etiology of meltdowns. In doing so, we frame meltdowns as a
consequence of underlying chronic hypervigilance and acute hyperreactivity to objectively
benign stressors driven by differences in the insular cortex—a multimodal integration hub that
adapts autonomic state and behavior to meet environmental demands. We first discuss
meltdowns through the lens of neurophysiology and argue that intra-insular hypoconnectivity
engenders vagal withdrawal and sympathetic hyperarousal in autism, driving chronic
hypervigilance and reducing the threshold of stressors those with autism can tolerate before
experiencing a meltdown. Next, we turn to neuropsychology and present evidence that
meltdowns reflect an inability to properly integrate contextual evidence, particularly social cues,
when acutely assessing ambiguous signs of danger in the environment—a process termed
neuroception. Finally, we build on contemporary predictive coding accounts of autism to argue
that meltdowns are ultimately driven by chronic failures of sensory attenuation and coherent
deep inference within the interoceptive hierarchy, possibly linked to oxytocin deficiency during
infancy. Throughout, we synthesize each perspective to construct a multidisciplinary, insula-
based model of meltdowns.

Key Words: Autism spectrum disorder, anterior insula, neuroception, predictive coding,
polyvagal theory
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1. Introduction:
“Imagine not being able to shut out noises all around you every minute of your life. Wouldn'’t

there come a breaking point for you?” (Lipsky & Richards, 2009)

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition
characterized by core deficits in social communication, cognitive flexibility, and sensory
processing. The sociocognitive aspects of the autistic phenotype are often most recognizable, given
that they impair fundamental aspects of social functioning—from emotional reciprocity and
relationship formation to communication through verbal and non-verbal cues (American
Psychiatric Association, 2013). However, abnormalities in sensory processing are also central to
the autistic phenotype. Specifically, those with ASD are known to experience “hyper- or
hyporeactivity to sensory input or unusual interests in sensory aspects of the environment”
(American Psychiatric Association, 2013). Rather than using prior experiences to construct a well-
integrated, coherent portrait of their sensory reality, those with autism tend to fixate on subtle
details in their environment (Lawson et al., 2014; Palmer et al., 2017; Van de Cruys et al., 2014)—
such as the hum of a switched-off television set and the hints of perfume that remain in the air after
a guest has already left the room (Belek, 2019; Bertone et al., 2005; Happe & Frith, 2006; larocci
& McDonald, 2006; Lane et al., 2019; Smith et al., 2015; Smith Roley et al., 2007).

Chronic hypersensitivity to auditory (Rotschafer, 2021; Yamasaki et al., 2014), visual
(Ashwin et al., 2009), tactile (Fukuyama et al., 2017), and olfactory (Ashwin et al., 2014) stimuli
can give rise to “sensory overload”—a frustrating sensory experience wrought with excessive
and overwhelming detail. Although there is wide variation in the specific sets of environmental

stimuli or situations that can overwhelm different autistic patients (Cesaroni & Garber, 1991;
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Grandin, 1992; Kern et al., 2006; Kientz & Dunn, 1997; Marco et al., 2011; Tecchio et al., 2003;
Watling et al., 2001), those with ASD universally report intense physical and emotional distress
when experiencing sensory overload (Belek, 2019; Jones et al., 2003; Leekam et al., 2007;
Marco et al., 2011; Pellicano, 2013). The behavioral manifestation of hypersensitivity-induced

distress can take several forms and is the primary focus of this article.

1.1. Clinical Description of Autistic Meltdowns:

People with autism, especially those with a high-functioning diagnosis, often cope with
sensory overload by “shutting-down,” or withdrawing from their environment altogether (Belek,
2019; Lipsky, 2011b). However, shutdowns can rapidly progress to, or be bypassed by,
aggressive behaviors indicative of intense arousal of the sympathetic nervous system—a clinical
profile termed “behavioral crisis” (or colloquially, “meltdown”) (Beversdorf et al., 2008;
Guinchat et al., 2015; Lipsky, 2011b; McGonigle et al., 2014; Vasa et al., 2020). Patients in
crisis will generally hit, kick, bite, or run away from caregivers, creating a distressing situation
for everyone involved (Alhaddad et al., 2019; Debbaudt, 2009; Mazefsky & Handen, 2011). It is
estimated that 68% of children and adolescents with ASD have displayed such aggressive
behaviors at some point in their lives (Kanne & Mazurek, 2011), although there is no
epidemiological data currently available to describe the prevalence of meltdowns themselves
among this patient demographic.

As has been emphasized in recent literature, it is critical to distinguish between the
behavioral phenotypes of a “tantrum” and an autistic meltdown. While tantrums are intentional
displays of rebellion or anger to achieve some goal, meltdowns are involuntary states of intense

arousal that manifest as violent and uncontrollable outbursts (Lipsky, 2011b; Mazefsky &
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Handen, 2011, p. 259; Montaque et al., 2018). During a meltdown, an autistic individual will
have limited situational awareness and experience impaired verbal reasoning, making it difficult
to extinguish the crisis through rational discussion and reassurance alone (Lipsky & Richards,
2009, pp. 17-18). These behavioral observations, in tandem with evidence of broadly enhanced
sympathetic arousal in autistic patients experiencing crisis (Goodwin et al., 2006; Picard, 2009),
portray the meltdown state as a pronounced fight-or-flight response (Lipsky, 2011b; Lipsky &

Richards, 2009, p. 20).

1.2. Causes of Autistic Meltdowns:

While meltdowns have traditionally been framed as hypersensitivity stress responses to
sensory overload, the actual causes of behavioral crisis can vary widely between patients,
situations, and contexts. In her first-hand, ethnographic account of autistic crisis behaviors, From
Anxiety to Meltdown, Debroah Lipsky distinguishes between meltdowns caused by sensory
overload and those related to cognitive tasks. Sensory meltdowns are caused by exposure to one
or more hypersensitivity trigger—such as a crowded public venue (which contains many
overwhelming visual, auditory, and tactile stimuli). In comparison, cognitive meltdowns result
when an autistic person feels they have an incomplete or ambiguous understanding of why
something has happened. This often occurs when they are provided unsatisfactory or seemingly
illogical answers to questions, or when their expectations for the future are violated by the
unpredictable realities of daily life. Meltdowns can be precipitated by the frustration involved in
integrating multiple pieces of information, abrupt transitions, time limits, miscommunications,
and overwhelming social situations (Lipsky, 2011a; Lipsky & Richards, 2009). The meltdown

response can also represent the “tip of an iceberg”—representing the unfortunate climax of
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several overwhelming experiences that gradually diminish an autistic individual’s ability to self-
regulate (Mesibov et al., 2005; Stark et al., 2015).

Behaviors reminiscent of autistic meltdowns can be observed in neurotypical populations.
However, these responses are generally limited in frequency, far less severe, and occur in
response to more obviously stressful events—such as the sudden passing of a loved one (Ishida
et al., 2015), intense fatigue (Scheydt et al., 2017; Sullwold, 1991), or exposure to an acute
physical threat (Bracha, 2004). This begs the question: why do those with autism exhibit
pronounced sympathetic arousal in response to cognitive and sensory stressors that are easily
tolerated by others? We can organize our thinking about this question and model the meltdown
response in three different ways. Those with autism either (1) have a baseline hypervigilance
(“autistic hypervigilance”) that reduces the threshold of additional stressors they can tolerate
before experiencing a fight-or-flight response (Figure 1a); (2) interpret the cognitive or sensory
stressors that trigger meltdowns as being much more dangerous or threatening than they appear
to neurotypicals (in other words, they experience “hyperreactivity”) (Figure 1b), or (3) a

combination of both (Figure 1c).

1.3. Objectives:

In this paper, we explore current evidence that autistic crisis behaviors are a consequence
of both autistic hypervigilance and hyperreactivity. In doing so, our objective is to initiate an
interdisciplinary dialogue about the neural substrates underlying autistic meltdowns.
Specifically, we seek to understand meltdowns through the lens of three distinct autism
literatures. First, we mobilize the neurophysiology literature to frame autistic hypervigilance—

and by extension meltdowns—as a behavioral correlate of hypoconnectivity within the insular
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cortex. The insula is a multimodal integration center that both processes (bottom-up) and
coordinates (top-down) activity in the autonomic nervous system in parallel with behavior—
processes termed interoception and interoceptive inference, respectively (Benarroch, 2019;
Craig, 2009). We then turn to neuropsychology and argue that autistic hyperreactivity and the
meltdown response reflect a fundamental failure of insular neuroception—a subpersonal threat
appraisal that integrates contextual evidence and adapts autonomic and behavioral states to meet
environmental challenges. Finally, we apply a predictive coding framework and argue that
chronic hypervigilance, acute hyperreactivity, and meltdowns reflect a failure of coherent deep
inference within the interoceptive hierarchy. In each section, we synthesize these three
perspectives to show that autistic meltdowns are a manifestation of both acute (hyperreactivity)
and chronic (hypervigilance) failures of context-dependent threat appraisal, likely resulting from

dysfunction of the anterior insula.

2. Neurophysiological Perspective: Intra-Insular Hypoconnectivity in Autism Drives
Chronic Hypervigilance:
2.1. Polyvagal Theory:

In his polyvagal theory, Stephen Porges (1995, 2001, 2007) argued that the mammalian
autonomic and behavioral response to threats could be classified into three distinct “phylogenetic
stages.” He characterized stage | responses as avoidance behaviors and “shutdowns” associated
with activity of the unmyelinated vagus—a parasympathetic efferent that descends from the
Dorsal Motor Nucleus of the Vagus (DMNV). Sympathetic fight or flight responses to threats are
classified as stage Il behaviors and are associated with activity in sympathetic efferents

originating from the rostral ventromedial medulla (RVMM). Conversely, a soothed, “stage 111"
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autonomic state is furnished by activity of the myelinated vagus—a parasympathetic efferent
which originates in the Nucleus ambiguus (NAmb) of the medulla. Stage 111 autonomic states are
typically accompanied by adaptive coping behaviors, including self-soothing and social
communication (Patriquin et al., 2019; Porges, 1995; Silvani et al., 2016).

Porges (2007) argued that activity in the myelinated branch of the vagus is functionally
integrated with that of the cranial nerves controlling facial expressions into a “Social
Engagement System.” This network coordinates stage III autonomic reflexes with positive affect
and facilitates appropriate verbal/non-verbal social engagement with non-threatening stimuli
(Patriquin et al., 2019). In fact, higher parasympathetic outflow, measured via high-frequency
spectral indices of heart rate variability (HF-HRV) and respiratory sinus arrhythmia (RSA), has
been correlated with greater emotional expressivity (Cole et al., 1996), lower trait anxiety
(Watkins et al., 1998), increased positive affect (Goodlin, 2015; L et al., 2013; Oveis et al.,
2009; Wang et al., 2013), enhanced perceived strength of social networks (Kok & Fredrickson,
2010), and improved executive function (Hansen et al., 2003; Johnsen et al., 2003). The reliable
coincidence of vagal outflow with these sophisticated patterns of socio-emotional behavior
suggests an intimate relationship between the cortical networks that regulate autonomic,
affective, and social cognition. According to the Neurovisceral Integration Model, the insula,
anterior cingulate cortex, amygdala and other regions of the cortex serve broad roles in
coordinating these three dimensions of behavior (Song et al., 2016; Thayer et al., 2009). These
cortical regions combine with the subcortical, midbrain, and brainstem structures outlined in
Figure 2 to make up the central autonomic network, which is responsible for selecting and
implementing appropriate autonomic and behavioral responses to novel (and therefore

potentially threatening) environmental stimuli (Benarroch, 1993).
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2.2. Role of the Insula in Autonomic Regulation, Sensory Processing, and Behavior:

Overlaid on the reflexive brainstem circuits in the central autonomic network is a robust
cortical architecture that supports nuanced, context-sensitive autonomic responses to threat in
animals. In other words, processing at the cortical level helps an organism select a polyvagal
response most suitable for their context. Key players in the cortical autonomic network include
the medial prefrontal cortex (McKlveen et al., 2015), the anterior cingulate cortex (Gianaros et
al., 2005; Luu & Posner, 2003), and the insular cortex (Cechetto, 2014; Silvani et al., 2016). We
focus much of our discussion going forward on the insular cortex, a cortical hub that coordinates
bottom-up interoception (perception of internal body states), sensorimotor processing and socio-
emotional functioning with top-down autonomic control (Uddin et al., 2017). For our purposes,
we will review current evidence of the insula’s role as a bottom-up sensory integration cortex
(Gogolla, 2017) and a top-down modulator of the autonomic nervous system (ANS).

The insula is thought to be the first cortical relay station that receives and processes
bottom-up interoceptive data from the visceral organs (ie. cardiac activity, blood pressure,
digestive processes, etc.). However, beyond serving as the primary interoceptive cortex, the
insula also serves as a multimodal integration center that uses exteroceptive sensory data to
contextualize peripheral body states (Benarroch, 2019; H. C. Evrard, 2019). It is well-
documented that thalamo-insular and cortico-insular efferents carrying auditory, visual,
vestibular, proprioceptive, gustatory, olfactory and pain-related sensory data terminate in the
insula of humans (Baier et al., 2013; Benarroch, 2019; Chikazoe et al., 2019; Deen et al., 2011;

Frank et al., 2014; Lopez et al., 2012; Mazzola et al., 2017).



THE MELTDOWN PATHWAY 10

In his seminal homeostatic model of insular function, neuroanatomist Bud Craig
proposed that the multimodal contextualization of interoceptive data proceeds systematically
along a posterior-anterior gradient (or rostral-caudal gradient in humans). According to his
model, interoceptive signals received in the posterior insula are integrated with exteroceptive
signals in the mid and anterior insula. These data are further integrated with information from
limbic (anterior cingulate) and frontal (dorsolateral and ventromedial prefrontal cortex) efferents
in the anterior insula (Al), contextualizing internal body states within the external environment
and giving rise to an embodied “sense of self” (Craig, 2009, 2010, 2015; H. C. Evrard, 2019;
Namkung et al., 2017). The anatomical details of Craig’s model have been largely supported in
humans using tractography, fMRI, and stroke studies (Benarroch, 2019; H. C. Evrard, 2019;
Rodgers et al., 2008; Shura et al., 2014).

Beyond its role in bottom-up interoceptive processing, the insula serves a complementary
role in top-down autonomic and behavior regulation (Craig, 2009; Goswami et al., 2011; Taylor
et al., 2010). Situated at the highest levels of the central autonomic network, the insula integrates
incoming streams of interoceptive and exteroceptive sensory data and selects a polyvagal
response that best meets the moment. In this way, the insula serves as a crucial crossroads
between the body and outside world. It is important to emphasize that insular activity initiates
more than just autonomic reflexes. Rather, it prepares an organism to meet environmental
challenges by evoking parallel shifts in autonomic and behavioral state (Gehrlach et al., 2019;
Rogers-Carter et al., 2018). For instance, Gehrlach et al. (2019) demonstrated that optogenetic
activation of the posterior insular cortex in mice induced parallel increases in respiratory rate and
defensive behaviors. Reciprocal connections between the insula and motor command centers

(including primary motor cortex, supplementary motor area and pre-supplementary motor area)
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allows the insula to influence motor plans and shape behavior (Benarroch, 2019; Ghaziri et al.,
2017). The cytoarchitecture and functional connectivity of the primate insular cortex are
summarized in Figure 3.

While the role of insular processing in autonomic regulation is well-established, mapping
the specific insular loci that trigger different phylogenetic stages of the threat response has
proven more difficult. Supplementary Table 1 reviews progress towards identifying insular loci
responsible for top-down sympathetic and parasympathetic control—termed pressor and
depressor loci, respectively. As outlined in the table; lesioning, micro-stimulation, and
neuroimaging studies in rodent and human subjects over the past thirty years have yielded very
mixed results. This is likely due to interspecies variation, methodological differences, low
sample sizes, and the limitations of using human participants in brain mapping studies.
Additionally, postulates that once dominated the field—such as the putative lateralization of
sympathetic and parasympathetic control to the right and left insula, respectively (Craig, 2002,
2009, 2015; Hilz et al., 2001; Lane et al., 2001; Oppenheimer & Cechetto, 2016; Oppenheimer et
al., 1992; Williamson et al., 1997; Zamrini et al., 1990)—are now being called into question by
contradictory new evidence (Beissner et al., 2013; Chouchou et al., 2019; Kimmerly et al., 2005;
Valenza et al., 2019).

It is therefore important to recognize that the precise localization of pressor and
depressor insular loci along right-left and anterior-posterior axes is still an ongoing area of
investigation. However, for our purposes, we consider the regions defined in Beissner et al.
(2013) and Chouchou et al. (2019) to be the most reliable candidates. Through a comprehensive
meta-analysis of 43 neuroimaging studies, Beissner et al. (2013) identified parasympathetic-

associated loci within bilateral anterior insulae and sympathetic-associated loci within the left
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posterior insula and the right ventral Al. Chouchou et al. (2019) established a slightly different,
more general causal dichotomy between anterior/posterior insular stimulation and
parasympathetic/sympathetic cardiac outflow, respectively. Specifically, they observed cardiac
pressor regions primarily in the posterior insula and depressor regions in anterior portions of the
mid-insula. Given the robust sample sizes used in both studies and the causative relationships
established by the latter, we will emphasize Beissner and Chouchou’s anterior-posterior
framework in our model of the central autonomic network. Specifically, we will regard cardiac
depressor regions as being primarily localized closer to the anterior pole of the insula, bilaterally,
and cardiac pressor loci as being localized primarily within the left posterior insula and the right
Al. Pressor and depressor loci mediate their respective autonomic responses by initiating
different top-down motor pathways within the central autonomic network (Silvani et al., 2016).
In fact, pressor and depressor loci project to topographically distinct regions of the lateral
hypothalamus, parabrachial nucleus, and NTS (Yasui et al., 1991). Pressor regions also more
heavily innervate the BNST (Yasui et al., 1991) and the amygdala (Cerliani et al., 2012; Ghaziri
et al., 2018), both of which are associated with stage Il sympathetic outflow (Lebow & Chen,

2016).

2.3. Evidence of Chronic Polyvagal Dysfunction in Autism (Autistic Hypervigilance)
As far back as 1964, Hutt et al. described autistic individuals as being in a “chronic and
inflexibl[y] high state of arousal.” They based this description on observations that children with
ASD exhibited a characteristic behavioral withdrawal and had markedly higher frequency EEG
waves than their neurotypical counterparts. Interestingly, Hutt also linked this state of

hyperarousal with the expression of crisis behaviors (Hutt et al., 1964; Patriquin et al., 2019). In
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the half-century since, substantial evidence has been gathered to suggest that those with autism
exhibit the autonomic (Bal et al., 2010; Bujnakova et al., 2016; Daluwatte et al., 2013; Goodwin
et al., 2006; Guy et al., 2014; Hollocks et al., 2014; Kootz & Cohen, 1981; Kushki et al., 2014;
Mathewson et al., 2011; Ming et al., 2010; Ming et al., 2005; Patriquin et al., 2019; Porges et al.,
2013; Vaughan Van Hecke et al., 2009; Watson et al., 2012; Woodard et al., 2012) and
behavioral (Buitelaar, 1995; Porges, 2001) markers of stage Il polyvagal responses on a near-
continuous basis. Inflexible stage Il responses have been particularly well-documented in autistic
patients with intellectual impairments (Patriquin et al., 2019). It is this chronic hypervigilance
that we propose to be reducing an ASD patient’s ability to tolerate additional cognitive/sensory
stressors before melting down into a full-blown fight-or-flight response (Figure 1a). While this
hypervigilant autonomic and behavioral phenotype seems to emulate a classical stage 11
response, it could in theory be mediated by either tonic parasympathetic withdrawal, sympathetic
over-activation, or a combination of both. Here, we briefly review evidence for parasympathetic
and sympathetic abnormalities in ASD, keeping in mind that autistic hypervigilance may be
mediated by different patterns of autonomic anomalies in different individuals (for a
comprehensive review, see Patriquin et al. (2019)).

ASD patients have been described extensively in the literature as chronically lacking a
“vagal brake” on their behavior, preventing them from adopting stage III coping strategies when
faced with non-threatening, but unpredictable situations like social encounters (Bal et al., 2010;
Patriquin et al., 2019; Porges, 2005). The persistence of this chronic “vagal withdrawal” in ASD
has been supported by comparative evaluations of RSA, a surrogate measure of parasympathetic
output positively correlated with vagal modulation of cardiac activity (Tonhajzerova et al.,

2016). Several studies have demonstrated significantly lower RSA scores in individuals with
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autism compared to typically developing controls (Bal et al., 2010; Denver, 2004; Edmiston et
al., 2016; Guy et al., 2014; Ming et al., 2005; Neuhaus et al., 2014; Patriquin et al., 2019; Porges
et al., 2013; Sheinkopf et al., 2019; Toichi & Kamio, 2003; Vaughan Van Hecke et al., 2009).
Additionally, during exposure to consecutive sensory challenges of different modalities (visual,
olfactory, auditory, etc.), the RSA scores of autistic children do not exhibit as much modality-to-
modality variation as those of neurotypicals (Schaaf et al., 2015). Those with ASD also have
lower HF-HRV indicies (Bharath et al., 2019; Matsushima et al., 2016)—a related measure that
directly predicts parasympathetic cardiovagal input (Beissner et al., 2013; Rajendra Acharya et
al., 2006). Vagal nerve stimulation has also been shown to improve some cognitive symptoms in
ASD patients with a comorbid seizure disorder (Murphy et al., 2000; Park, 2003; Porges, 2005,
pp. 72-73), further substantiating the role of vagal withdrawal in autism.

There is less of a consensus about the role of sympathetic abnormalities in ASD, although
accounts seem to generally point towards sympathetic overactivity as a common mediator of
autistic hypervigilance. This model is supported by physiological evidence that autistic patients
have enhanced baseline pupil dilation (Anderson & Colombo, 2009; Anderson et al., 2013;
Blaser et al., 2014) and elevated electrodermal activity (EDA)—a non-invasive marker of
sympathetic outflow (Hirstein et al., 2001; Kushki et al., 2013). The literature also indicates that
ASD patients display increased baseline plasma levels of norepinephrine (NE), the primary
neurotransmitter of the sympathetic nervous system (Cook, 1990; Israngkun et al., 1986; Lake et
al., 1977; Launay et al., 1987; Leboyer et al., 1994; Leventhal et al., 1990). This finding is
further substantiated by observations that autistic patients produce urine with higher baseline

levels of vanillyl mandelic acid (VMA) (Bharath et al., 2019) and homovanillic acid (HA)
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(Katluzna-Czaplinska et al., 2010)—both catecholamine breakdown products—compared to
neurotypicals.

Moreover, improvement in verbal problem-solving and increased functional connectivity
in the cerebral cortex has been observed following the administration of -adrenergic
antagonists, which block the sympatho-excitatory effects of NE, to autistic individuals
(Anderson et al., 2013; Beversdorf et al., 2008; Narayanan et al., 2010). These findings suggest
that sympathetic over-activation plays an important role in the social and cognitive behaviors
associated with ASD. Despite these findings, several recent studies have reported null or
contradictory results on nearly every parameter described above, including EDA (Bujnakova et
al., 2016; Fenning et al., 2019; Gu et al., 2015; Panju et al., 2015) and VMA levels (Minderaa et
al., 1994). This is likely a reflection of both methodological differences between studies as well
as actual variation in the baseline sympathetic tone exhibited by different individuals with
autism. Therefore, while there is robust evidence for general parasympathetic withdrawal in
ASD, there are likely inter-individual differences in sympathetic activity across the vast and

heterogeneous ASD population.

2.4. Neural Substrates of Polyvagal Dysfunction in Autism:

In recent years, researchers have considered several neural substrates to understand the
striking autonomic abnormalities associated with ASD. Brainstem nuclei such as the DMNV
(Kamitakahara et al., 2017) and NAmb (Delafield-Butt & Trevarthen, 2018; Kamitakahara et al.,
2017) have been considered probable loci of ASD-related dysfunction, given their proximal roles
in mediating stage | and 111 polyvagal responses, respectively. However, there is very little

empirical evidence that supports the dysfunction of these specific brainstem structures in autism
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(Dadalko & Travers, 2018; Delafield-Butt & Trevarthen, 2018; Rodier et al., 1996). McGinnis et
al. (2013) offer a provocative analysis of NTS dysfunction in autism. They argue that the NTS is
highly susceptible to ischemia and toxin accumulation—both of which are proposed risk factors
for ASD (Desoto & Hitlan, 2007; Driscoll et al., 2018; Modabbernia et al., 2017; Palmer et al.,
2009; Roberts et al., 2013; Skogheim et al., 2021; Windham et al., 2006)—due to the enhanced
fenestration of its blood-brain barrier. Their review also presents evidence that cerebral blood
flow, a parasympathetic-mediated phenomenon (Truijen & Van Lieshout, 2010) known to be
globally depressed in autism (Bjgrklund et al., 2018; Burroni et al., 2008), is controlled by the
NTS. They show that, while lesioning the NTS impairs cerebrovascular autoregulation (Ishitsuka
et al., 1986), NTS stimulation enhances cortical blood flow (Golanov & Reis, 2001; Nakai &
Ogino, 1984), indicating that dysfunction of the NTS itself or the regulatory mechanisms that
control it may underlie ASD-related autonomic abnormalities.

Several studies have also proposed the amygdala as a primary mediator of autistic
hypervigilance (Bal et al., 2010; Kushki et al., 2014; Ming et al., 2005; Patriquin et al., 2019;
Vaughan Van Hecke et al., 2009). However, no study to date has offered a specific neural
mechanism to explain how amygdala dysfunction may contribute to vagal withdrawal.
Researchers in the field are now arguing that it may be more promising to instead study
dysfunction of the broader neural networks in which the amygdala participates (Zalla & Sperduti,
2013), particularly focusing on the higher-cortical areas that regulate this limbic structure
(Birmingham et al., 2011; Paul et al., 2010). As emphasized previously, autistic hypervigilance
presents with both autonomic and behavioral signs. If the locus of pathophysiology were in a
brainstem or subcortical member of the central autonomic network, ASD would be a peripheral

dysautonomia, and we would not see such severe social and behavioral correlates. Given that
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vagal withdrawal in ASD is accompanied by deficits in socio-cognitive, emotional, and
behavioral regulation, this necessarily implies dysfunction at the highest cortical levels of the
central autonomic network—where these three functions are coordinated—rather than at the
peripheral or brainstem level. These observations particularly suggest that dysfunction of the
insular cortex, which we previously described to be a nexus of autonomic, social, and emotional
functioning (Craig, 2009, 2015; Shura et al., 2014), may underlie the autonomic symptoms of

autism.

2.5. Insular Contributions to Hypervigilance in Autism:

Neuroanatomical observations further substantiate the insula’s role in autistic meltdowns.
Over the past two decades, several studies have reported hypoactivity in the anterior insula of
autistic patients across a diverse range of experimental tasks and conditions (Di Martino et al.,
2009; Eilam-Stock et al., 2014; Paakki et al., 2010; Pitskel et al., 2011; Silani et al., 2008; Uddin
& Menon, 2009). Furthermore, Failla et al. (2017) reported evidence of decreased connectivity
between the anterior and posterior insula of autistic children—an anatomical feature of ASD
supported by the studies summarized in Supplementary Table 3. In the context of this intra-
insular hypo-connectivity, decreased anterior insula activity in autism can be understood as a
consequence of impaired insular processing along the posterior-anterior axis. This would
theoretically limit the neural input received by the mid and anterior insula, leading to defects in
the behavioral functions these brain regions carry out. In fact, hypofunction of the Al has already
been mobilized to explain the socioemotional and cognitive deficits associated with ASD (Caria
& de Falco, 2015; Di Martino et al., 2009; Nomi & Uddin, 2015; Odriozola et al., 2016; Uddin &

Menon, 2009).
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As mentioned earlier, while the behavioral and autonomic components of a stage 11
response are predominantly initiated by depressor loci in the anterior insula, those of stage 11
responses are triggered by pressor loci in the posterior insula. The chronic impairment of
posterior-anterior insular processing in autism therefore minimizes the functional input into
depressor regions in the anterior insula, which we propose leads to chronic vagal withdrawal.
Moreover, we predict that insular activity generated by incoming interoceptive data—unable to
reach the anterior insula—may instead activate pressor regions located more posteriorly
(particularly in the left insula). This disruption of sympathovagal balance would replace stage 11
responses with a persistent stage 11 response, giving rise to the autonomic and behavioral
correlates of autistic hypervigilance. We propose this chronic hypervigilance reduces the
threshold of additional stressors a person with autism can tolerate before experiencing a
behavioral meltdown (Model 1; Figure 1a). Figure 4 depicts how intra-insular hypo-
connectivity may contribute to chronic vagal withdrawal and sympathetic hyperarousal in

autism.

3. Neuropsychological Perspective: Acute Failure of Neuroception Drives Autistic
Hyperreactivity
According to the model of chronic hypervigilance described in the previous section,
those with autism are primed to experience and interact with the world as if danger lurks behind
every corner. Their baseline autonomic physiology and behavior are constantly tuned to prepare
them to face potentially threatening situations. However, beyond this baseline hypervigilance, it
is also possible that failures of the acute threat appraisal process contribute to the etiology of

meltdowns. As described earlier, meltdowns themselves are stage 11 responses to acute sensory
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or cognitive triggers that are easily tolerated by neurotypicals—including crowded public
venues, uncomfortable clothing, abrupt transitions and miscommunications (Lipsky, 2011a). It
has been documented that benign tactile stimuli elicit an acute EDA response in autistic adults
double that observed in neurotypicals, suggesting that those with autism interpret acute changes
in their sensory environment as being much more threatening than they actually are (in other
words, they experience “hyperreactivity”) (Figure 1b) (Fukuyama et al., 2017).

In this section, we mobilize neuroception—a neuropsychology-based model of threat
assessment—to rationalize why those with autism are predisposed to respond indiscriminately to
any acute environmental stressor (be it a bear or a firework) with an immediate and inflexible
stage Il response. In other words, we offer a neuroception-based explanation for why those with
autism seem to have a reduced capacity to acutely deploy the vagal brake when encountering
new and potentially (but not necessarily) threatening sensory data—supporting the role of
hyperreactivity (Figure 1b) and sensory hypersensitivities in meltdown etiology. In doing so, we
also attempt to build a more complete model of the insula-driven threat response in neurotypicals
and those with autism by grappling with several questions that our neurophysiology-based model
of meltdowns left us with. These questions include: how does the insula of neurotypicals decide
which novel situations are safe enough to not warrant a stage 11 response, allowing progression to
stage Il response, and how does this relate to the anatomical restriction of depressor regions to
the anterior insula? In other words, how does the processing of novel and potentially threatening
stimuli in the posterior insula differ from that in the anterior insula—without which we see such
severe impairments of the threat response. Does the temporal progression of phylogenetic threat
response stages (from stage 1 to I11) in neurotypicals correlate with the anatomical progression of

interoceptive data along the insula’s posterior-anterior axis?
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3.1. Neuroception and Polyvagal Theory:

When faced with unexpected and potentially threatening exteroceptive stimuli, the brain
evaluates the situation’s “threat level” and decides which stage of the threat response (eg. stage I,
I1, or I11) to initiate through a subconscious process called neuroception (Patriquin et al., 2019;
Porges, 2004). Neuroception draws on exteroceptive context cues, interoceptive feedback, and
prior experience to 1) determine whether an acute change in the environment is threatening and
2) tune autonomic physiology and behavior accordingly (Porges, 2022). For example, the brain
integrates the facial expressions, posture and vocal prosody of newly encountered strangers to
determine whether they are safe or threatening. Either prosocial (stage I11) or defensive (stage 1)
behavioral repertoires are then deployed to meet the moment. Situations determined to be
threatening will disinhibit limbic structures like the amygdala and elicit stage 1l fight-or-flight
responses. By contrast, the threat response in safe contexts tends to proceed sequentially, with
unfamiliar stimuli first eliciting an increase in sympathetic tone that gradually fades as the
stimulus is recognized as unthreatening, and the vagal brake is re-engaged (Porges, 2004). This
stepwise sympathetic withdrawal tends to accompany amygdalar (Hoffman et al., 2007; Liberzon
et al., 2000; Plichta et al., 2014; Williams et al., 2005), somatosensory (Mobascher et al., 2010),
and behavioral habituation (Wilson, 1987) to exteroceptive stimuli that become constant or
familiar. For our purposes, when we discuss neuroception, we are exclusively referring to the
acute (1-2 minute) evaluation of a novel, unfamiliar, unexpected and potentially dangerous

change in the environment.

3.2. Role of the Insula in Neuroception:
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Given its intersecting roles across cognitive and affective domains, the insula has been
proposed to be one of the primary neural substrates of neuroception (Critchley, 2005; Minichino
et al., 2017; Porges, 2007). The insula has access to parallel streams of interoceptive and
exteroceptive data, and is therefore uniquely positioned to answer the question: do my current
behavioral and autonomic states prepare me to face my current environment? However, where
and how neuroception fits into Bud Craig’s traditional homeostatic model of insular function has
not yet been explored. We believe attempting to map the insular substrates of neuroception in
safe and threatening contexts will help us develop some intuition for why the insula’s top-down
autonomic control centers are structured the way they are, how threat appraisal differs in the
anterior and posterior insula and why intra-insular hypoconnectivity drives autistic
hyperreactivity. For our purposes, we propose the basic working model summarized in Figure 5.

We want to emphasize two key elements of this model. First, we assert that the
exteroceptive context cues used to guide neuroception in the posterior and anterior insulae are
likely very different. While the anterior insula has access to well-integrated and fully
contextualized multimodal data, neuroception in the posterior insula relies on information that is
comparatively uncontextualized. To illustrate this proposed difference, we will use the example
of an unexpected firework show. Imagine a young child—who has never seen fireworks
before—having fun at an amusement park with his family. He initially perceives his context to
be safe and is expressing a stage 111 autonomic and behavioral state. Suddenly, he begins hearing
loud, repeated explosions and sees flashing lights in the corner of his eye. According to the
homeostatic model of insular function, the following multimodal data—each of which we refer
to as ‘neuroceptive cues’—converge on the child’s posterior insula as the firework show begins:

the sound of repeated explosions (danger cue), flashing lights (danger cue), people around him—
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including his parents—smiling and laughing (safety cue) and (at least at first) interoceptive data
reflecting the child’s initially calm autonomic state (safety cue). Each of these individual data
points report conflicting information that has not yet been integrated into a coherent portrait of
the child’s environment. Despite this ambiguity, the lights and explosions are fairly
unambiguous—albeit general—instinctual signs of potential danger, and there is a clear
mismatch between the child’s new, potentially dangerous environment and their internal body
state. Under our model, the posterior insula will react to this mismatch by initiating a stage Il
autonomic and behavioral response. This corresponds to the top horizontal panel in Figure 5 and
the first leg of the threat response in safe, but novel, contexts.

To overturn this initial stage I response, the child’s brain would have to conclude that the
neuroceptive cues indicating safety are actually more reliable readouts of the environment’s
threat level than those indicating danger. He would have to place more confidence in other
people’s reactions to the firework show than his own innate reaction to it, as his only real safety
cues are the calm and happy responses of people around him at the park (as indicated by facial
expressions, vocal prosody, etc.) (Porges, 2009). This is the case for many unfamiliar, potentially
threatening situations—from crowded stores during the holidays to loud graduation ceremonies.
Furthermore, the child would likely place different amounts of confidence in the reactions of his
parents and those of a stranger to the fireworks, which might lead to different neuroception
patterns if the child is with family or alone. Accordingly, weighing the relative reliability of
safety and danger cues requires each cue to be fully contextualized—both within the current
environment and within a person’s past experiences.

Within the insula, this kind of demanding cognitive process could only happen in the

anterior insula. By the time neuroceptive cues reach this part of the insula, they have been fully
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integrated and contextualized by prior knowledge, observational learning cues and other factors
from the ventromedial and dorsolateral prefrontal cortex (Gonzalez & Fanselow, 2020; Horga et
al., 2011; Penick & Solomon, 1991; Stark et al., 2018; Szeska et al., 2022), anterior cingulate
cortex and parietal lobe (Chang et al., 2013; Deen et al., 2011; Gu et al., 2013; Nomi et al., 2016;
Uddin et al., 2014). The anterior insula also plays an important role in deciphering and
embodying the emotions of others, which allows people to weigh the reactions of those around in
their own threat assessments (Gu et al., 2012). Neuroception in the anterior insula corresponds to
the bottom horizontal panel in Figure 5—the second leg of the threat response in safe, but novel,
contexts. In summary, while the anterior insula has the capacity to weigh the reliability of
multiple pieces of ambiguous sensory evidence to distinguish safe and dangerous environments,
the posterior insula is starved of the appropriate context and can only evaluate a potential threat
at face value.

Our working model argues that neuroception in the neurotypical posterior insula occurs
to help furnish an initial behavioral and autonomic response to a change in the environment
while the anterior insula gathers information and performs a more thorough and time-consuming
threat assessment. This leads us to the second key element of our model that we seek to
emphasize: because the anterior insula can make highly informed threat assessments, even in
ambiguous situations, it can initiate either stage Il or stage I11 autonomic and behavioral
responses. By contrast, because the posterior insula can only identify the inherent threat level of
individual neuroceptive cues, it can only initiate stage Il responses when faced with a novel,
potentially threatening situation. We propose this may be why depressor regions are restricted to
the anterior insula, while pressor regions exist along the entire insula (although they are

primarily concentrated in the posterior insula).
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3.3. Failure of Neuroception in Autism Drives Hyperreactivity:

Chronic hypervigilance and acute hyperreactivity in ASD have been described by many
as reflecting a critical failure in the neuroception of safety vs. threat, preventing the transition
from stage Il sympathetic to stage 111 parasympathetic responses to unfamiliar stimuli (Patriquin
et al., 2019; Porges, 2004; Singletary, 2015; Vaughan Van Hecke et al., 2009). This perspective
is supported by evidence of attenuated neural and behavioral habituation to stimuli across
sensory modalities in ASD. These findings are summarized in Supplementary Table 2. A
particularly interesting study by Green et al., (2015 & 2019) demonstrated that only autistic
youth with sensory hypersensitivity—a known cause of sensory meltdowns (Belek, 2019; Jones
et al., 2003; Leekam et al., 2007; Marco et al., 2011; Pellicano, 2013)—exhibit attenuated neural
habituation of the amygdala and sensory cortex in response to novel tactile and auditory stimuli.
When considered alongside our discussion of neuroception above, these data indicate that
sensory hypersensitivity in autism—and by extension hyperreactivity and meltdowns—could
have one of three causes: (1) overreliance on threat cues in anterior insula-based neuroception;
(2) under-reliance on safety cues in anterior insula-based neuroception; or (3) use of only
posterior insula-based neuroception to evaluate new, potentially threatening environmental
changes.

In the context of our neurophysiology-based model (Figure 4), any of these causes are
possible. The central idea of our “meltdown pathway” model is that intra-insular
hypoconnectivity prevents the progressive integration of multimodal data along the posterior-
anterior axis, limiting the functional input into the anterior insula. If the hypoconnectivity is

minor, this could limit the delivery and integration of subtle but important neuroceptive cues—
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especially social cues, like vocal prosody and facial expressions—to the anterior insula.
Returning to our fireworks example, this would prevent the child from being able to confidently
rely on the only safety cue in their environment—the calm, happy people around him. Hatfield et
al. (2017) employed similar logic to argue that the interoceptive, autonomic and behavioral
correlates of autism reflect impaired integration and contextualization of interoceptive cues along
the posterior-anterior axis of the insula—possibly due to intra-insular hypoconnectivity. On the
other hand, if the hypoconnectivity is more severe, this would disrupt the delivery of safety and
danger cues to the anterior insula altogether, and neuroception would take place exclusively in
the posterior insula. In this case, the child would indiscriminately respond to changes in the
environment that are potentially threatening—~be it a bear or a firework—with an unmitigated
stage Il response.

This logic can be extrapolated to understand why safe situations that contain ambiguous
signs of potential danger—such as crowded shopping malls, subway cars or abrupt changes in
context—can evoke meltdowns from those with autism (Lipsky, 2011a; Lipsky & Richards,
2009). We want to emphasize that the stage I-111 polyvagal responses mounted following insular
neuroception are not analogous to the automatic, reflex-like responses elicited by so-called “low-
road” processing of danger signals by the amygdala. The latter are threat responses that occur on
the timescale of seconds, whereas polyvagal stages are deployed over the course of minutes to
hours and correspond to “high-road” danger processing routes (Pessoa & Adolphs, 2010). We
also want to emphasize that, in our model, neurotypicals likely only rely on posterior insula-
based neuroception for very short periods (tens of seconds to minutes) after being presented with
ambiguous danger signals. This explains why, in safe contexts, the behavioral and autonomic

markers of a stage 1l response are barely expressed before being quickly replaced by an adaptive
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stage I11 response. It is only when the social, experiential, and contextual insights gained from
neuroception in the anterior insula are attenuated (or removed)—as in autism—that the acute
behavioral and autonomic consequences of posterior insula-based neuroception can be observed.

We propose these consequences manifest as meltdowns.

4. Cognitive Science Perspective: Predictive Coding Account of Meltdowns:

In the previous two sections, we built an integrated model of autistic meltdowns in which
chronic hypoactivity of the anterior insula prevents those with autism from effectively using
context cues—especially social cues—to resolve ambiguous sensory data that indicate potential
danger in their environment. This, we argue, manifests as chronic hypervigilance and acute
hyperreactivity (or “hypersensitivity”) to sensory stimuli deemed trivial by neurotypicals. In this
final section, we discuss how our model fits within contemporary predictive coding accounts of
autism. Over the past decade, predictive coding-based sensory processing models have furnished
new ways of thinking about the neural mechanisms that underlie the sensory and social
symptoms of autism (Palmer et al., 2017; Quattrocki & Friston, 2014; Van de Cruys et al., 2014;
Van de Cruys et al., 2019). We seek to build on these accounts and advance the perspective that
chronic hypervigilance, acute hyperreactivity and ultimately meltdowns in autism reflect a

failure of coherent deep inference within the interoceptive predictive coding hierarchy.

4.1. Overview of Predictive Coding Theory:
Predictive coding is a neurocognitive framework that seeks to unpack sensory perception
and action in the context of hierarchical information processing. According to this theory, higher

regions of the central nervous system (CNS) generate recursive, top-down predictions about the
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hidden causes of sensory phenomena that are continuously compared with data reported by
sensory epithelia (Friston, 2009). Should these data match the brain’s hypotheses—termed
‘priors’—they are said to be accurately predicted and no longer ‘newsworthy’ for the
individual’s ongoing perception of their lived world. Therefore, the sensory information (i.e.,
prediction errors) will not be sent on to higher CNS regions for further processing. However, if
there is a discrepancy between the brain’s prior and the sensory reality, a prediction error (PE) is
generated and sent up the cortical hierarchy (Ainley et al., 2016). This process, called ‘prediction
error minimization,” proceeds iteratively within and between reproducible units that span the
CNS hierarchy—from peripheral reflex arcs to the cortex. Each level of the hierarchy contains
error units—in which incoming data is compared with top-down predictions from the level
above—and expectation units—where priors are both updated based on incoming PEs and fed
back to further influence error processing at lower levels (Shipp, 2016; Shipp et al., 2013). Error
minimization ensures that only novel and therefore relevant sensory information is sent to higher
cortical regions for perceptual inference.

At lower levels of the CNS, generative models issue relatively concrete, modality-
specific predictions. In other words, basic features of exteroceptive, proprioceptive, and
interoceptive data are processed in distinct, low-level hierarchies. Once PEs reach higher levels
of the hierarchy, they encounter deep generative models issuing multimodal predictions (Seth &
Friston, 2016). These priors predict the forest for the trees, constraining the integration of
multimodal sensory data within a coherent set of contexts (ie. the overall state of the
environment and the organism). This allows more intricate, abstract, and context-sensitive

features of unpredicted sensory data to be extracted at each level of the hierarchy, creating an
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increasingly rich and well-defined portrait of the environment (Shipp, 2016; Van de Cruys et al.,
2014; Wacongne et al., 2011) (Figure 6).

Predictive coding theory is rooted in the statistical principles of the Bayesian brain
hypothesis, which—on a predictive coding account—conceives of bottom-up prediction errors
and top-down predictions as the message passing necessary for Bayesian belief updating. In
other words, error minimization updates prior beliefs about the causes of sensory input into
posterior beliefs (i.e., expectations or representations)—that generate top-down predictions.
When considered from this computational perspective, error minimization is analogous to a two-
sample t-test between the data reported by sensory organs and those predicted by the brain
(Friston, 2010; Van de Cruys et al., 2014). As with any data analysis, both the center and spread
of sensory data play critical roles in the assessment of statistical significance. Within predictive
coding, precision quantifies the spread or uncertainty associated with various (sub personal)
Bayesian beliefs.

Specifically, precision is mathematically defined as the inverse variance of a prior or
PE’s distribution, as it is represented by the brain (Feldman & Friston, 2010). In other words, it
quantifies the predictability of what is predicted by the brain and the reliability of what is
reported by sensory organs. According to this definition, PEs at any hierarchical level that are
deemed more precise—than expectations at the level above—tend to be viewed as more reliable
by the brain and will therefore carry more weight during error minimization. Conversely, it will
be very difficult for an imprecise PE to update a precise prior (Ainley et al., 2016).
Neurologically, PE precision is thought to correspond to the post-synaptic gain of superficial

pyramidal cells (Ainley et al., 2016; Friston, 2009, 2010; Quattrocki & Friston, 2014), which is
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modulated in turn by the neuropsychological construct of attention (Ainley et al., 2016; Smout et
al., 2019).

The true relative precisions of priors and PE’s are unknown and must also be anticipated
(predicted) by the brain. In other words, the brain must assign precision to different streams of
sensory data during error minimization—in the same way that we choose reliable sources of
information (Friston, 2010; Van de Cruys et al., 2014). A key aspect of this ‘precision
engineered’ message passing in the brain is that it entails both the attentional selection of precise
prediction errors and their context-dependent attenuation. Attenuation through decreasing
precision is an important complement to attentional selection; especially, in filtering out
redundant information that we generate ourselves. Perhaps the clearest example here is saccadic
suppression: namely, the transient reduction of sensory precision during saccadic eye
movements, which produce self-generated optic flow (that we never actually ‘see’). Modulating
precision across sensory hierarchies in response to environmental changes is another way the
brain adapts error minimization to suit an organism within its constantly changing context
(beyond updating multimodal predictions issued by deep generative models) (Seth & Friston,
2016). Under this framework, the brain is viewed as a statistical organ that constantly integrates
previous experiences, multimodal context clues, and an organism’s state to select dependable
information streams and generate adaptive perceptual experiences (Hohwy, 2013; Hsu et al.,

2020; Van de Cruys et al., 2014).

4.2. Active Inference Across Exteroceptive and Interoceptive Domains:
Beyond mediating perception through belief updating, prediction errors can also fulfill

top-down predictions through action within a predictive coding framework (Friston, 2016; Seth
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& Friston, 2016). Active inference refers to the idea that prediction errors can be resolved
through either perception or action (Friston et al., 2010; Seth & Friston, 2016). When prediction
errors are resolved through perception, as described above, the brain’s generative models are
updated in light of new sensory evidence gathered from the environment. By contrast, when
prediction errors are resolved through action, outflow through top-down motor (proprioception)
or autonomic (interoception) pathways is tuned until bottom-up sensory evidence matches top-
down predictions. What determines whether a prediction error will drive action or perception—
as well as the types of actions a prediction error can drive—varies between different levels of the
hierarchy.

At low levels of the hierarchy (ie. the spinal cord and peripheral efferents),
proprioceptive and interoceptive prediction errors can be resolved by driving peripheral reflex
arcs. In this context, descending predictions provide the set point for homeostatic motor and
autonomic control that is fulfilled by reflexes. For instance, if stretch receptors in a particular
muscle report a position different from that predicted by the spinal cord or alpha motor neurons,
the resulting prediction error will drive a reflex that shifts the muscle’s position back to its set
point (Fel'dman, 1966; Parr et al., 2021). Similarly, if the vagus nerve detects a shift in some
autonomic parameter (ie. heart rate, blood pressure, rate of peristalsis, etc.) from its set point, the
resulting prediction error will drive a corrective autonomic reflex that shifts the influence of
parasympathetic and sympathetic efferents on visceral processes. For a prediction error to drive a
reflex instead of perception, it must remain in the periphery and not reach the brain. In other
words, the access of those prediction errors to higher levels of the hierarchy must be transiently
attenuated or “gated.” To clarify, the prediction errors themselves are not being attenuated—

those are needed to drive the reflex. Rather, by attenuating the access of those prediction errors
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to higher levels of processing, the brain can ignore sensory evidence suggesting deviations from
motor and autonomic set points (Friston et al., 2010; Seth & Friston, 2016).

Prediction errors that reach higher levels of the hierarchy (ie. the cerebral cortex) can be
used to drive a much more sophisticated form of active inference—planning. Active inference as
planning is operationally defined by a generative model that predicts the consequences of action.
This type of inference can adapt an organism’s internal state and behavior to meet environmental
challenges following a shift in context. Under this framework, the homeostatic reflexes discussed
above can be transiently suspended, and unattenuated prediction errors can instead be used to
develop and implement a robust, context-appropriate plan (Kaplan & Friston, 2018). In other
words, while reflexes enforce homeostatic set points, plans permit allostasis (Botvinick &
Toussaint, 2012; Pezzulo et al., 2015). Another key difference between reflexes and plans is their
temporal scale. Whereas a reflex occurs in the moment, a plan unfolds over time. Given this, we
classify neuroception and its corresponding polyvagal responses as “allostatic plans” generated
by active inference in the cortex—more specifically, in the insula—under an active inference
framework. What determines whether a prediction error reaching the brain will drive perception
or action is the prior precision; whereas a broad prior will be updated to guide perception, a

precise prior will be fulfilled through action (Friston et al., 2010).

4.3. Interoceptive Inference: Active Inference in the Interoceptive Hierarchy
The insular cortex represents a high-level predictive coding hierarchy in which
interoceptive and exteroceptive data are thought to be progressively integrated to guide
interoception, regulate autonomic physiology and shape behavior (Ainley et al., 2016). There are

many different models of how the interoceptive hierarchy is organized, and the specific role
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exteroceptive data plays in the minimization of interoceptive error signals is debatable (Ainley et
al., 2016; Allen, 2020; Barrett, 2017; Barrett & Simmons, 2015; Paulus et al., 2019; Seth &
Friston, 2016). For our purposes though, we employ a simplified model in which the
interoceptive hierarchy behaves as described above (Figure 6), with deep levels of the hierarchy
(ie. the anterior insula) issuing multisensory predictions about future interactions between
interoceptive and exteroceptive states (Allen, 2020; Barrett, 2017; Seth & Friston, 2016). In
other words, priors issued by generative models deep in the hierarchy predict the multisensory
consequences of action and represent multimodal snapshots of an organism’s internal and
external environment. (Barrett, 2017; Seth & Friston, 2016).

Consequently, as a prediction error penetrates deeper into the interoceptive hierarchy, it
can be used to drive plans involving top-down motor and autonomic networks of increasing
diversity in response to environmental changes detected by increasingly diverse (in terms of
modality) sensory evidence. It is important to recognize that the multimodal information
received by the insula has already enjoyed quite a bit of deep hierarchical processing. For
instance, rather than receiving direct prediction errors from V1, the insula receives highly
processed data issued by the visual brain, and likewise, from the prefrontal cortex, anterior
cingulate, amygdala, and other brain regions (Baier et al., 2013; Benarroch, 2019; Chikazoe et
al., 2019; Deen et al., 2011; Frank et al., 2014; Lopez et al., 2012; Mazzola et al., 2017). By
progressively integrating these rich multisensory inputs with the comparatively “raw”
interoceptive data entering the posterior insula, posterior-to-anterior insular processing
contextualizes interoceptive data within the external environment and implements adaptive,

context-appropriate allostatic plans (Craig, 2009, 2010, 2015; H. C. Evrard, 2019; Namkung et
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al., 2017; Seth & Friston, 2016). This integrated model of the insular predictive coding hierarchy
is illustrated conceptually in Figure 7.

As a practical example, under this model, the anterior insula of the child in our fireworks
example would need to juggle (at least) two (counterfactual) multimodal predictions in response
to the sudden fireworks show: #1 the fireworks are dangerous, and my body should be preparing
to fight or flight; #2 the fireworks are a spectacle to be enjoyed alongside family and friends, and
I should be expressing a stage |11 autonomic and behavioral state. In the first few seconds to
minutes after the fireworks start, the only pieces of sensory evidence the child relies on are the
loud noises and bright lights coming from the fireworks—objective, albeit ambiguous, signs of
danger that immediately grab his attention. These highly precise bottom-up data generate large
prediction errors that travel all the way up the predictive coding hierarchy and update the child’s
multimodal predictions. He now expects external danger paired with internal mobilization, and
this updated model will enforce an initial stage Il allostatic plan (prediction #1 above). It is only
when the child recognizes their parents’ highly salient (and therefore highly precise) smiling
faces—that they shift their internal model to prediction #2 and deploy the vagal brake. Similar

intuitive examples are provided in Paulus et al. (2019).

4.4. Contemporary Predictive Coding Models of Autism
In recent years, predictive coding theory has been mobilized by several groups to
characterize the sensorimotor and social aspects of the autistic phenotype. Lawson et al.
formalized this perspective in 2014, when they argued that enhanced PE precision reliably
explains the sensory and social deficits in ASD. This failure to attenuate sensory precision is

thought to stem from a dysfunction of top-down mechanisms that control post-synaptic gain,
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which the authors claimed to be a functional consequence of known neurochemical abnormalities
in ASD (Lawson et al., 2014). Van de Cruys et al. (2014) offered a similar perspective, arguing
that autistic patients are unable to flexibly modulate their sensory precision in response to
different stimuli, possibly due to abnormalities in the acetylcholine and norepinephrine
neurotransmitter systems. Their account implies that all incoming sensory data, including
sensory noise, is afforded a uniformly high precision, without regard for its reliability or
relevance to the individual's ongoing sensory experience. In other words, the autistic brain is
thought to send all incoming sensory data up the cortical hierarchy to be consciously perceived,
creating a sensory experience wrought with excessive, uninformative and unnecessary detail.
Palmer et al. (2017) provide an excellent overview of current evidence supporting Lawson et al.
(2014) and Van de Cruys et al. (2014)’s aberrant precision accounts of autism. Quattrocki and
Friston (2014) extended this discussion into the interoceptive domain, arguing that persistent
oxytocin deficiency during infancy can explain the social and autonomic phenotypes found in
autism. In neurotypicals, oxytocin is thought to attenuate interoceptive prediction errors in the
insula during self-generated action (ie. homeostatic regulation, allostatic behaviors, social
interaction). Lacking this selective filter on the bottom-up interoceptive data stream, autistic
infants fail to form clear associations between body states (ie. stage I-111 polyvagal stage) and
exteroceptive context clues. In other words, they fail to fully acquire the deep hierarchical
models (in the anterior insula) required for social cognition, autonomic regulation and emotional

processing (Quattrocki & Friston, 2014).

4.5. Integrating Neurophysiological, Neuropsychological and Predictive Coding Models

of Meltdowns
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We can now apply these contemporary predictive coding theories of autism alongside the
other perspectives advanced in this review to construct a comprehensive model of meltdowns.
First, aberrant precision accounts of autism shed light on why those with autism experience
hypervigilance (Figure 1a): their brains are constantly amplifying uninformative, irrelevant
sensory details in their environment—from the feeling of clothes touching their skin to the subtle
flickering of lightbulbs overhead and background noises in crowded public places. Because these
prediction errors are unattenuated, the sensory details they carry are likely being reported to
levels of the cortex capable of organizing an allostatic plan—Ilike the insula—rather than a short-
lived reflexive response. We speculate that these extemporaneous and confusing inputs—to
which neurotypicals do not usually attend—are likely labeled as ambiguous danger signals that
1) require further context clues to resolve and 2) need to be addressed through an allostatic plan.
For example, an autistic student sitting in a school cafeteria with friends (an objectively safe
context) who constantly attends to each sound reverberating through the noisy cafeteria may
recognize the situation as a danger from which they need to escape.

Now, if unattenuated sensory precision were the only deficit in autism, we would not see
meltdowns in this population. Even if they found the sensory experience in the cafeteria
unpleasant, they would be able to utilize deep generative models to integrate other cues from the
environment, especially social cues (e.g., their friends laughing and having fun), along with their
interoceptive state to 1) recognize that the situation is safe and 2) either enforce a stage 11l
autonomic and behavioral state or calmly find a quieter area to finish their lunch. We argue that
unattenuated precision in autism is compounded by impairments of deep processing within the
interoceptive hierarchy, leading to meltdowns. Taking Quattrocki and Friston (2014)’s model a

step further, we propose that oxytocin deficiency during a critical developmental window (John
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& Jaeggi, 2021) prevents lower levels of the insular hierarchy (e.g., posterior insula) from
impressing themselves upon higher levels (e.g., anterior insula), leading to failures of deep
processing and interoceptive inference. This impairment in insular processing is reflected
neuroanatomically as the intra-insular hypoconnectivity (Supplementary Table 3) and anterior
insula hypoactivity (Di Martino et al., 2009; Eilam-Stock et al., 2014; Paakki et al., 2010; Pitskel
etal., 2011; Silani et al., 2008; Uddin & Menon, 2009) discussed earlier. In neurotypicals, the
anterior insula unpacks and assimilates interoceptive information in the context afforded by
every other modality the brain has to offer with the aim of prescribing an adaptive allostatic plan.
Lacking coherent intra-insular processing, autistic children fail to form sophisticated generative
models in which autonomic state, multiple environmental cues, and social cues are co-
represented.

Linking back to our discussion of neuroception, this prevents those with autism—
especially young children—from utilizing social cues (e.g., their parents smiling and laughing)
and other context clues to appropriately tune their threat assessments of ambiguous danger
signals (e.g., fireworks, loud public venues, tight clothes, etc.). Rather, we argue that these
children rely on more rudimentary generative models in their interoceptive hierarchy (e.g., those
in the posterior insula), which function more like high-level coincidence detectors between an
exteroceptive sign of danger (e.g., a loud public venue) and a given allostatic state (e.g.,
sympathetic arousal and fight-or-flight behaviors). We would expect children relying on these
generative models to exhibit hyperreactivity (Figure 1b) and respond to stimuli easily tolerated
by neurotypicals with meltdowns—immediate autonomic and behavioral responses to ambiguous

environmental stressors that can never be nuanced, contextualized, or resolved by high-level
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processing in the mid and anterior insula. The contributions of both unattenuated sensory

precision and impaired deep processing are illustrated conceptually in Figure 8.

5. Future Directions and Limitations:

Our primary objective in this review is to initiate an interdisciplinary dialogue on the
neural mechanisms underlying autistic meltdowns. However, before we can further dissect their
etiology, the epidemiological and clinical profile of meltdowns must be more deliberately
characterized. This area is so ripe for exploration, with so many fundamental questions about
meltdowns still unanswered. Do all autistic patients have meltdowns? If not, what proportion of
them do? Are there certain clusters of clinical features (intelligence level, social competence,
etc.) that predict meltdown frequency and/or severity? In what contexts are meltdowns most
likely to occur? Are children who received early intervention therapy (<2 years of age) less
likely to experience meltdowns? Are there sensory cues of a specific modality (e.g., visual,
auditory, tactile) that are universally more likely to trigger meltdowns within the autistic
population? Or is there more inter-individual heterogeneity?

One of the main barriers to understanding ASD is the heterogeneity of the autistic
phenotype. Different patients are known to vary widely in the degree to which their cognition,
sensory processing, social, and autonomic functioning are impaired, making it very difficult to
develop broad generalizations that apply to the entire autism population (Wozniak et al., 2017).
For these reasons, the model presented in this article will apply to varying degrees to different
subsets of the ASD population. To further nuance our model in the future, classification schemes

that appreciate how clusters of behavioral symptoms intersect to create different autism subtypes
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must be developed. Of relevance to this review, it would be particularly useful to further
investigate how the integrity of intra-insular tracts relates to the frequency and severity of SH,
autonomic dysregulation, and meltdown behaviors. The heterogeneity of intra-insular
connectivity within the ASD population is evidenced by the substantial variation in interoceptive
awareness and accuracy between autistic individuals (DuBois et al., 2016).

In this paper, we make the claim that there are systematic differences in the generative
models created in the posterior and anterior insula. Specifically, we argue that children with
autism rely on the rudimentary models found in the posterior insula, which function more like
high-level coincidence detectors between exteroceptive and interoceptive cues, while
neurotypicals rely on anterior insula models that integrate interoceptive and exteroceptive cues to
prescribe an adaptive allostatic plan. Future theoretical and empirical studies should be
conducted to further define how these generative models are rudimentary or sophisticated (e.g.,
they could have high temporal or counterfactual depth (of policies), they could be hierarchical,
they could have many parameters, etc.).

Based upon the theoretical perspectives advanced in this review, one might predict that
autistic patients who have more frequent and severe meltdowns will exhibit enhanced autonomic
arousal and sensory hypersensitivity in response to a broader array of hypersensitivity triggers.
These behaviors likely reflect intra-insular hypo-connectivity, which can be confirmed using
fMRI. A causal link between these neuroanatomical abnormalities and meltdown-associated
behaviors can be further drawn through murine studies. Specifically, future investigations could
attempt to recapitulate the meltdown behaviors characteristic of autism by selectively lesioning
the intra-insular tracts of developing mice. It will also be important going forward to further

investigate why the severity and modality-specificity of sensory hypersensitivity varies between
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different autism patients (O'Neill & Jones, 1997); and, moreover, how the nature of sensory
hypersensitivity contributes to meltdown severity. We expect that such variation reflects
individual differences in the integrity of modality-specific intra-insular tracts. For instance, it
may be that those who are highly sensitive to certain sounds have a primary disconnection in the
intra-insular structures that carry auditory information from the posterior insula to the Al to be
integrated. Using effective connectivity analysis tools such as Dynamic Causal Modelling to link
different hypersensitivities with specific intra-insular abnormalities will help substantiate the
present model of meltdown neurophysiology and guide the development of personalized
therapeutics for crisis behaviors and sensory hypersensitivity in the future. Doing such studies
will also yield important new insights into the neural mechanisms by which modality-specific
exteroceptive data is processed and integrated with interoceptive data in the insular hierarchy—
another critical area of ongoing research (Craig, 2015).

Here, we only consider the role of sensory hypersensitivity in meltdown progression, but
not sensory hyposensitivity. However, it is well-documented that autistic individuals suffer from
both (Leekam et al., 2007; Marco et al., 2011). Thus, it will be important to consider the role of
hypo-sensitivities in triggering crisis behaviors in future studies. Lastly, the involvement of other
cortical substrates—including the amygdala, ACC, and mPFC—in meltdown neurophysiology
should be further investigated, as these three structures critically mediate attention, top-down
autonomic control, and emotion as part of the central autonomic network (Sklerov et al., 2019).
In the future, further study of how each of these structures interacts with the insula of autistic
people, and how these interactions vary across the diverse autism population, will help us further
elaborate the neural model of autistic hypervigilance, sensory hypersensitivity, and crisis

behaviors presented here. Finally, we built our predictive coding model of meltdowns using only
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one perspective on how the interoceptive predictive coding hierarchy within the insular cortex is
organized. The neural mechanisms involved in progressively integrating and processing
interoceptive and exteroceptive data in the insula remain unclear, and we invite further study of

meltdown etiology through the lens of additional models of insular predictive coding.

6. Therapeutic Implications

In this article, we built a multidisciplinary model of meltdown physiology that implicates
impaired intra-insular processing in autistic hypervigilance, hyperreactivity and ultimately crisis
behaviors. Specifically, we argued that meltdowns reflect an underlying hypo-connectivity within
the insula, which (when viewed from a physiological perspective) reduces the influence of pressor
regions on physiology and behavior and (when viewed from a neuroceptive or computational
perspective) impairs context-dependent threat appraisal. Therefore, an intervention which
reinstates intra-insular connectivity at an early enough age could theoretically 1) enhance overall
pressor activity in autistic patients and 2) promote the acquisition of high-level generative models
in the anterior insula. In principle, this might be accomplished using an interoceptive training
program that reinforces hierarchical insular processing. As mentioned earlier, the insula serves as
the primary interoceptive cortex in which bottom-up visceral cues are processed and integrated
with data from other modalities along a posterior-to-anterior gradient (Craig, 2002; Henry C.
Evrard, 2019). Building a training program which enhances both the progression of interoceptive
data from the posterior insula as well as the predictive capacity of the anterior insula may help
strengthen key intra-insular tracts along which interoceptive and exteroceptive data are

progressively integrated.
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For example, one could develop a technology which exogenously recapitulates the
predictive coding of efferent heartbeat data using auditory feedback. The program’s “passive
training mode” would do so by generating attention-directing tones when a user’s instantaneous
heart rate begins to change. In this way, the device would only the user know when novel
interoceptive data is being reported, which is exactly what happens during true error minimization
in the insula. Moreover, the device could be engineered such that the frequency and intensity of
the tone produced indicate the direction (increase or decrease) and magnitude, respectively, of the
heart rate change. By supplementing a user’s endogenous primary interoceptive cortex with
detailed, multimodal sensory feedback delivered in accordance with the principles of predictive
coding, the program would theoretically promote appropriate error minimization within the autistic
insula. Additionally, autistic children using the program’s “active training mode” would have the
opportunity to practice predicting their heart rate deviations after engaging with the passive
training mode. In theory, using both passive and active training modes will enrich the development
of adaptive generative models within the insula, which will in turn strengthen intra-insular tracts.
Moreover, providing such auditory feedback to premature neonates—who are 3-4 times more
likely to develop autism (Agrawal et al., 2018)—in conjunction with an oxytocin replacement
therapy (Sikich et al., 2021) could promote the acquisition of adaptive, context-sensitive generative
models early in life. It would also be interesting to see whether autistic children administered
intranasal oxytocin replacement therapy from a young age exhibit reductions in the frequency and

severity of their meltdowns.

7. Conclusions:
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In this paper, we initiate an interdisciplinary dialogue on the neural basis of autistic
hypervigilance, hyperreactivity, and meltdowns. Drawing from the neurophysiology literature,
we provide evidence that intra-insular hypoconnectivity drives chronic hypervigilance, reducing
the influence of depressor circuits on autonomic physiology and behavior. We then turn to
neurophysiology to argue that hyperreactivity stems from an inability to use context clues from
the environment (especially social cues) during neuroception. Finally, we apply contemporary
predictive coding accounts of autism to frame hypervigilance, hyperreactivity, and meltdowns as
a manifestation of both unattenuated sensory precision and incoherent deep inference in the
anterior insula. This pattern of neural activity engenders immediate autonomic and behavioral

responses to ambiguous environmental stressors that can never be adequately contextualized.
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Figure 1. Modeling autistic hypervigilance and hyperreactivity (a-c) Schematic graphs
comparing the relative stress levels (in arbitrary units) of neurotypicals and autistic individuals at
baseline and during a behavioral meltdown that would be expected for three models of
meltdowns. The graph in (a) represents autistic hypervigilance, which models autistic meltdowns
as a product of baseline autonomic hypervigilance that reduces the threshold of additional
stressors they can tolerate before experiencing a fight-or-flight (meltdown-like) response. The
graph in (b) models autistic hyperreactivity, arguing that autistic individuals interpret the
cognitive or sensory stressors that trigger meltdowns as being much more dangerous or
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threatening than they appear to neurotypicals. (c) frames autistic meltdowns as a product of both
hypervigilance and hyperreactivity. In each model, the meltdown trigger for autistic individuals
is either fireworks (sensory stressor) or changed plans (cognitive stressor), while that for
neurotypicals is a more obviously stressful major life events, such as the sudden passing of a
loved one. Created with BioRender.com.
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Figure 2. The Central Autonomic Network: A schematic illustrating the descending
autonomic pathways involved in regulating stage I, 11, and III polyvagal responses. Note that
there are additional connections between each structure that are not depicted in the figure.
Abbreviations: mPFC, medial Pre-Frontal Cortex; PVN, Paraventricular Nucleus of the
Hypothalamus; DMH, Dorsomedial Nucleus of the Hypothalamus; LH, Lateral Hypothalamus;
BNST, Bed Nucleus of the Stria Terminalis; PAG, Periaqueductal Gray; NTS, Nucleus Tractus
Solitarius; DMNV, Dorsal Motor Nucleus of the Vagus; N. Amb, Nucleus Ambiguus; RVMM,
Rostral Ventromedial Medulla; d, dorsal; 1, lateral; vl, ventrolateral. Created with
BioRender.com.
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Figure 3. Neuroanatomy of the primate insular cortex: A schematic illustrating the efferent,
afferent, and bidirectional tracts linking the insular cortex with the rest of the brain. In the
neurotypical insula, intra-insular tracts process incoming interoceptive data along an anterior-to-
posterior gradient. The integration of these data with cognitive and emotional cues in the mid and
anterior insula gives rise to adaptive autonomic and behavioral states. The construction of this
figure was heavily informed by the information presented in Figure 1C of Benarroch (2019).

Abbreviations: ACC, anterior cingulate cortex; dIPFC, dorsolateral prefrontal cortex; vmPFC,
ventromedial prefrontal cortex. Created with BioRender.com.
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Figure 4. The Meltdown Pathway: A neurophysiological model of autistic hypervigilance:
Interoceptive data arriving in the posterior insula progresses from the posterior to the anterior
insula along intra-insula tracts. The integration of these data with exteroceptive data, limbic cues
and cognitive cues in the mid and anterior insula contextualizes internal body states within the
outside world. The insula uses this integrated interoceptive and exteroceptive data to select the
appropriate autonomic and behavioral response (either stage I, 11, or I11 polyvagal responses) to
novel, potentially threatening external stimuli. The parts of the insula that initiate stage Il and 11
responses are termed pressors (preferentially localized to the posterior insula) and depressors
(preferentially localized to the anterior insula), respectively. In autism, hypo-connectivity
between the anterior and posterior insula prevents the delivery of integrated sensory data to the
anterior insula. This, we argue, augments pressor activity and diminishes depressor activity
chronically—leading to autistic hypervigilance. Abbreviations: ACC, anterior cingulate cortex;
dIPFC, dorsolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex. Created with
BioRender.com.
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Figure 5. A basic model of neuroception in the anterior and posterior insula: The insula is
uniquely positioned to evaluate and control whether an individual’s autonomic and behavioral
state prepares them to meet environmental challenges. Changes in the environment which are
unfamiliar and potentially (but not necessarily) threatening will first be processed by the
posterior insula, which will initiate an initial stage 11 autonomic and behavioral response. The
anterior insula then contextualizes multiple safety and danger cues from the environment and
draws from prior experiences to make a more nuanced, context-sensitive threat assessment.
Depressor or pressor regions in the anterior insula can then either maintain the stage Il response
(for situations deemed threatening) or deploy the vagal break (for situations deemed safe). When
a situation is deemed safe, the onset of stage |11 autonomic and behavioral states is often
coordinated with amygdalar and sensory habituation.
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Figure 6. A generalized predictive coding hierarchy: A simplified schematic of a predictive
coding hierarchy in the central nervous system. Parallel streams of exteroceptive, interoceptive,
and proprioceptive sensory data entering the nervous system are compared with top-down priors
of increasing complexity. At low levels of the hierarchy, predictions are basic, monomodal, and
uncontextualized. At high levels of the hierarchy, prediction errors encounter abstract,
multimodal, and well-contextualized predictions which assimilate data across modalities into a
coherent portrait of the environment. Each level contains separate expectations and error units to
process ‘causes’—objects in the environment which create predictable streams of sensory data
(ie. a smiling face, a bird chirping, etc.)—and ‘states’—the time and context-dependent
dynamics of causes (Shipp, 2016). Created with BioRender.com.
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Figure 7. Our model of predictive coding in the neurotypical insula: Raw interoceptive
inputs from the viscera along with well-processed exteroceptive context clues from the sensory
corticies (e.g., the visual or auditory brain) arrive in the posterior insula. As these data are
progressively processed and integrated along the posterior-to-anterior axis, they are compared
with generative models of increasing complexity and multimodality. The posterior insula
contains more rudimentary generative models, which function like high-level coincidence
detectors between an exteroceptive sign of danger (e.g., a loud public venue) and a given
allostatic state (e.g., sympathetic arousal and fight-or-flight behaviors). By contrast, generative
models in the anterior insula co-represent autonomic state, multiple environmental cues, and
social cues, allowing interoceptive information to be unpacked in the context afforded by every
other modality the brain has to offer. This enables context-sensitive threat appraisal and ensures
that a person’s specific context (whether threatening or safe) is matched with an appropriate
allostatic plan (e.g., stage I, Il, or 1l polyvagal responses). Created with BioRender.com.
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Figure 8. Unattenuated sensory precision and failures of deep processing in the insular
predictive coding hierarchy engender meltdowns: Aberrant precision accounts of autism
argue that all incoming sensory data, including sensory noise, is afforded a uniformly high
precision in those with autism (Lawson et al., 2014; Van de Cruys et al., 2014; Palmer et al.,
2017). As a consequence, uninformative, irrelevant sensory details in the environment are
constantly reported to levels of the cortex capable of organizing an allostatic plan—Ilike the
insula. We speculate that these extemporaneous and confusing inputs are likely labelled as
ambiguous danger signals that must be resolved through an allostatic plan. Unattenuated sensory
precision is represented by the over-weighted purple prediction error arrows shown in this figure.
Compounding this, we argue that those with autism also experience impairments of deep
processing within the interoceptive hierarchy, leading to meltdowns. Building on Quattrocki and
Friston (2014)’s model, we propose that early oxytocin deficiency impairs acquisition of the
high-level generative models required to 1) assimilate interoceptive feedback with exteroceptive
context clues and 2) select context-appropriate allostatic plans (e.g., stage I, 11, or Il polyvagal
responses). This is represented by the covered anterior insula in the above figure. The result of
these two changes in interoceptive predictive coding leads those with autism to display
immediate autonomic and behavioral responses to ambiguous, but objectively harmless,
environmental stressors that can never be contextualized by high-level processing in the mid and
anterior insula. Created with BioRender.com.




