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Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount
of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on
brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the
electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is
of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy
production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca®"
homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS)
production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca>"
handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development,
contributing to ASD. ROS and Ca?* regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged
opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis,
ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the
inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many
mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is
still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal
brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects
of neuroscience.
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INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelopmental condi-
tion representing one of the most disabling chronic disorders in
childhood [1]. It displays abnormalities in social interactions,
restricted interests, deficits in communication, and repetitive
behavior [2]. ASD children are often subjected to bullying [3] and
react with hostility, isolation, or even self-harm [4]. These features
are aggravated by an inflexible adherence to routines and
inadequate reaction to sensory stimulation. Gradually, this
disorder descends into a permanent lifelong disability [5]. Recent
studies determined that the global prevalence rate of ASD is 1 in
36 children [6]. The last decade has been characterized by a
dramatic increase in the number of children diagnosed with ASD.
It has been found that the prevalence rate of children with ASD in
the US grew by 52% between 2017 and 2020 [7]. ASD is likely to
affect the entire family of the person diagnosed with this disorder
due to a significant level of stress associated with the permanency
of this disorder, the accompanying co-morbidities, and insufficient
health support for autistic patients [8, 9]. Finding the markers and
therapeutic targets for ASD treatment will significantly impact the
global economy.

ASD has a diverse etiology. However, it is believed that common
mechanisms underlying the behavioral deficits of ASD can be

found [10]. Targeting these mechanisms may result in novel
therapeutic approaches aimed at developing the means of
effective prevention and treatment of the core ASD symptoms
[11]. One organelle containing such targets could be mitochon-
dria. Mitochondria comprise many common molecular pathways
and are the main energy source for the brain tissues. On top of its
important role as the “powerhouse of the cell,” these organelles
are also essential regulators of cellular metabolism, redox state,
intracellular calcium signaling, and programmed cell death
mechanisms [12-15]. It has been shown that mitochondrial
functions are often disrupted in ASD patients [16]. This could be
partly associated with the mitochondrial DNA (mtDNA) mutations
in autistic children [16]. Mitochondrial dysfunctions in ASD
individuals could also result from various risk factors, both
endogenous and exogenous, including toxins, immune stimula-
tion, drugs, and metabolic abnormalities [17]. Thus, ASD is tightly
associated with changes in mitochondrial structure and functions,
which make these organelles a likely end effector in ASD patients
with different etiology.

In this review, we discuss various mitochondria-associated
pathological processes related to ASD and the interplay between
them. The multifaceted role of mitochondria in ASD is schema-
tically presented in Fig. 1.
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Fig. 1 The multifaceted role of mitochondria in ASD. The brain displays high mitochondrial content, particularly in the synapses (shown in
the upper left part of the figure). Increased mitochondrial levels of ROS, NO, and RNS, ETC impairments leading to the breakdown of OXPHOS
and ATP production, dysregulation of the mitochondrial Ca®"cycling, imbalance between mitochondrial dynamics and mitophagy, prolonged
opening of the mPTP, and activation of various mitochondria-related programmed cell death pathways, all contribute to the synaptic
dysfunction and ASD. OXPHOS complexes are shown on the upper semisphere of the mitochondrion: I, NADH dehydrogenase; Il, succinate
dehydrogenase; lll, ubiquinone cytochrome c oxidoreductase; IV, cytochrome c, cytochrome oxidase; and V, ATP synthase. Complexes I-IV

belong to ETC.

Functions of the brain mitochondria in physiological
conditions

The human brain, which weight accounts for ~2% of the body
weight, consumes 20% of the whole body’s oxygen. Most of the
mitochondrial oxygen is utilized for ATP production by the
mitochondrial electron transport chain (ETC) through oxidative
phosphorylation (OXPHOS) [18]. OXPHOS consists of two parts: the
ETC and chemiosmosis. The ETC includes four complexes. Complex
| is composed of NADH dehydrogenase, flavin mononucleotide,
and eight iron-sulfur clusters; Complex Il is succinate dehydrogen-
ase; Complex Il includes cytochrome b, Rieske subunits, and
cytochrome c proteins; and Complex IV contains cytochrome ¢
oxidase. Chemiosmosis is carried out by Complex V of OXPHOS, the
multi-unit enzyme ATP synthase that produces ATP by utilizing the
energy of the proton gradient established by ETC [19]. Importantly,
93% of the ATP necessary for normal brain functioning is supplied
by mitochondria [20]. This energy supports synaptic transmission,
described below, which is a very energy-demanding process. ATP
provides energy for ion pumps, supporting ion gradients, to ensure
vesicle recycling and mitochondrial motility.
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Cytosolic Ca®" entering the mitochondrial matrix through the
mitochondrial Ca®" uniporter (MCU) stimulates OXPHOS by
activating pyruvate dehydrogenase phosphatase, which in turn,
increases the activity of pyruvate dehydrogenase complex [21].
Other mitochondrial citrate cycle enzymes, such as alpha-
ketoglutarate dehydrogenase and isocitrate dehydrogenase can
also be activated by Ca?" [21, 22]. Mitochondria can release Ca*"
into the cytosol via the mitochondrial permeability transition pore
(mPTP) or the Na'/Ca®" exchanger [23, 24]. This results in the
accumulation of cytosolic Ca®™ followed by activation of synaptic
vesicle exocytosis, and release of neurotransmitters.

Mitochondria are also the main source of reactive oxygen
species (ROS) and reactive nitrogen species (RNS). ROS and RNS
production in physiological conditions is maintained at low levels
[25, 26] and used to regulate various physiological functions,
including cell signaling, homeostasis, vascular tone, and immune
reactions [27]. They include various free radicals and reactive
molecules formed from molecular oxygen and nitrogen, including
superoxide anion radical (O), hydroxyl radical (OH’), hydrogen
peroxide (H-,0,), singlet oxygen ('0,), nitric oxide (NO), and
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peroxynitrite (ONOO™) [28]. ROS and RNS may trigger pro-
grammed cell death, e.g., apoptosis [29], necessary for tissue
remodeling during the development and normal tissue turnover
[30], proliferation, differentiation, maturation of neural stem cells,
dendritic processes, and synaptic plasticity [31-33].

Since the developing nervous system and its critical processes
rely heavily on the ATP produced by OXPHOS in the mitochondria,
the immature brain is critically vulnerable to faults in energy
supply [34, 35]. Moreover, under pathological conditions, from a
life-supporting organelle, the mitochondrion becomes an orga-
nelle that actively supports death [36]. This process is accom-
panied by the ETC breakdown with the failure to produce the
necessary amount of ATP, uncompensated production of ROS and
RNS, and breakdown of various molecules, which leads to the loss
of mitochondrial and cell integrity, and activation of programmed
cell death and necrosis. All these outcomes of mitochondrial
dysfunction may disrupt the neurodevelopmental processes, and
it is not surprising that mitochondrial impairments are implicated
in neurodevelopmental disorders, such as ASD [34]. Moreover, it
has been found that mitochondrial functions and integrity can be
affected by many of the risk factors of ASD, including toxins,
immune activation, medicines, and metabolic disturbances [17].
Uncovering these mitochondria-related mechanisms may shed
light on the common pathways of ASD [11].

Role of mitochondria in synaptic transmission

Most of the energy, produced by the brain mitochondria [18], is
used for synaptic transmission [20]. This determines the crucial
role of mitochondria in brain functioning. Interestingly, the
number of mitochondria in synapses is very high. It exceeds the
predicted energy demand [20]. This means that the synapse
mitochondria have additional functions at the nerve terminals,
which may include Ca®" buffering directly affecting the firing
probability of neurons [37, 38].

Previous studies suggest two main pools of mitochondria: a
motile and an immobile [39, 40]. It is generally accepted that in
developing neurons each pool covers around 50% of the
mitochondria [41]. However, with the maturation of neurons,
mitochondrial trafficking significantly declines [42, 43]. Mitochon-
drial transport and distribution correlate with synaptic activity [44];
their accumulation at presynaptic terminals and postsynaptic
dendritic spines is increased when the synaptic activity is elevated
[31]. Mitochondrial transport is carried out by a special mechanism
involving the cytoskeleton. It is mediated by kinesin-1, which
binds to mitochondria via anchoring proteins including the
microtubule-associated motors dynein-dynactin, the Ca?"-depen-
dent mitochondrial Rho GTPase 1 (Miro1), and the trafficking
kinesin proteins 1 and 2 [45]. It has been suggested that the first
step in blocking mitochondria trafficking along the axon is carried
out by the Ca’'-dependent release of mitochondria from
microtubules involving the combined actions of the key adaptors
of kinesins and dyneins, Miro/Milton, and syntaphilin (SNPH)
[46, 47]. Lin et al. have found in experiments on primary cortical
neurons that SNPH also promotes the removal of damaged
mitochondria in axons independently of mitophagy by creating
vesicles with late-endosomes [48]. Other, yet unknown, mechan-
isms might also contribute to the “anchoring” of mitochondria at
axon terminals or other locations [41].

Mitochondrial morphology depends on their localization in the
two neuronal compartments, the axon, and dendrites [41]. For
example, it has been found that in the cortical pyramidal neurons,
dendritic mitochondria are presented in long, tubular-shaped form,
occupying 70-80% of the dendritic branches. Meanwhile, axonal
mitochondria have a remarkably standard small size, taking less
than 10% of axonal volume [49, 50]. This morphological variability
likely affects mitochondrial functions, such as ATP production and
Ca®’" buffering. However, the effect of these differences on
neuronal development and function remains unknown [41].
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The involvement of mitochondria in Ca®" cycling regulation and
ATP production makes these organelles crucial for synaptic
function during neurodevelopment and in the adult brain.
Exocytosis of synaptic vesicles (SV) containing neurotransmitters
is initiated by Ca®" influx through voltage-gated Ca®" channels
during excitation of the presynaptic bouton. This neurotransmit-
ter’s release is coupled to the endocytosis of SV to preserve the SV
pool for the normal functioning of the synapse. Presynaptic
cytoplasmic Ca?" can be depleted by several complementary
mechanisms, including sarcoendoplasmic reticulum Ca”"-ATPase
(SERCA) to the endoplasmic reticulum (ER), plasma membrane
Ca’"-ATPase to the extracellular space, and MCU to the
mitochondrial matrix [51-53]. Studies with genetically encoded
sensors for Ca®" cycling and SV exocytosis revealed the core roles
of mitochondria in presynaptic Ca®" clearance [54, 55]. It has been
shown that mitochondria-free axon terminals of hippocampal or
cortical neurons accumulate more Ca®" in response to repetitive
stimulation, which promotes increasingly more SV release [55, 56].
Here too, inhibition of MCU-dependent presynaptic Ca>" uptake
caused increased presynaptic cytoplasmic Ca®' levels and
negatively affected short-term synaptic plasticity [55]. Remarkably,
it has been demonstrated that mitochondria can be recruited to
presynaptic boutons in response to elevated neuronal activity and
contribute to rescaling synaptic excitability to match the neuronal
stimulation [56].

It has been generally appreciated that ATP production by the
mitochondria is critically important presynaptically [45]. It is
needed for neurotransmitter reuptake, endocytosis of SV, and
presynaptic vesicles, let alone maintain the concentration
gradients of ions across the membrane. This opinion is supported
by a study showing activity-driven ATP production at axon
terminals [57]. However, Lee et al. have found that even at non-
physiologically high action potential stimulations, inhibition of
glycolysis or the mitochondrial ATP synthesis leads to only mild
changes in presynaptic ATP levels [41]. Another study compared
changes in ATP levels in axon terminals with or without
mitochondria. They observed no difference in this parameter
between the presynaptic boutons even under high-intensity
stimulation of neurotransmitter release (600AP) [58]. These data
imply that in the mammalian axons of the adult brains,
presynaptic mitochondria are probably not the main source of
ATP. The authors suggest that glycolysis or other ways of ATP
production may supply sufficient ATP necessary for synaptic
activity [41].

Most studies on the role of mitochondria in synaptic transmis-
sion have focused on the organelle’s presynaptic pool. Meanwhile,
the role of postsynaptic mitochondria is less investigated.
Mitochondria are mainly found in the dendritic shafts but can
also reach the spines [59]. The importance of the dendritic pool of
mitochondria has been confirmed by the fact that in hippocampal
neurons, the depletion of mitochondria in dendrites diminishes
the number of synapses and spines [31]. Dendritic postsynaptic
Ca®" cycling is important for synaptic integration and regulation
of gene expression [41]. The main sources of dendritic Ca®" are ER
and extracellular space. However, studies using 3D-serial electron
microscopy demonstrated that dendritic ER has many contact
sites with mitochondria (MAMs, mitochondria-associated mem-
branes) [60]. MAMs are essential for the regulation of the neuronal
Ca®" concentration via the SERCA, the ER channels inositol 1,4,5-
trisphosphate receptors, the glucose-regulated protein 75, the
MCU, and the voltage-dependent anion channel (VDAC) [61].
Furthermore, it appears that a significant portion of Ca*" released
from the synaptic ER is directly transported to mitochondria at the
MAMs [62]. In dendrites of cortical pyramidal neurons lacking a
novel MAM protein PDZ domain-containing protein 8, a significant
fraction of Ca®" released from the ER during synaptic stimulation
accumulates in the cytosol and elevates the local dendritic Ca®*
levels. These data imply that the distribution and extent of MAMs
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in the dendrites may regulate Ca®" dynamics and thus, determine
the properties of synaptic integration and plasticity at the
dendrites [62].

Synaptic developmental abnormalities appear to be essential
contributors to ASD. To emphasize the importance of these
aberrations in ASD, this disorder is now referred to as “develop-
mental synaptopathy” [63]. It should be noted that the
abnormalities of synaptic transmission in ASD are tightly
associated with mitochondrial aberrations. The synaptic and
mitochondrial aberrations in different ASD-related syndromes
are discussed below in the section “Mitochondrial and synaptic
abnormalities in ASD-related syndromes”.

Mitochondrial dysfunction in ASD

Metabolic studies have linked mitochondria to the pathophysiol-
ogy of ASD [64]. Back in 1985, Blass and Coleman reported on the
increased levels of lactate in the plasma of four autistic patients
and suggested that this was a result of aberrations in OXPHOS
[65]. Thirteen years later, Lombard reviewed the data on the
metabolic changes in ASD patients. He hypothesized that lactic
acidosis, increased concentration of Krebs cycle metabolites in
urine, reduced levels of carnitine in plasma, decreased utilization
of glucose in the brain, and lowered ATP levels in these patients
are associated with mitochondrial dysfunction [66]. Based on
these data, Lombard proposed that ASD is a mitochondrial
disease [66]. The data on metabolic abnormalities in ASD patients
continue to accumulate (these data are summarized in Table 1).
Thus, the levels of mitochondria-related metabolites, such as
pyruvate, carnitine, and ubiquinone in the blood of children
diagnosed with ASD appeared to be significantly different from
those of their typically developing peers [35]. Correia et al. have
found high levels of lactic acid in the plasma of 17% of the studied
cohort of ASD children, and 28% of them displayed increased
levels of lactate/pyruvate ratio [67]. Muscle biopsies taken from 30
autistic children revealed a mitochondrial defect in 7 of these
children [68]. Further studies supported these findings. For
example, in 8.3% of the 60 ASD patients, biochemical markers
of failed aerobic respiration were found [69]. These markers

included increased plasma alanine and lactate levels and the
presence of organic acids, such as 3-methyl-glutaconic and
dicarboxylic acids, and Krebs cycle intermediates, in the urine of
these patients [69]. In another work, 20% of ASD children
displayed increased plasma lactate levels and a lactate/pyruvate
ratio [70]. A decrease in free and total serum carnitine
concentration, reduced pyruvate, and increased alanine and
ammonia levels were observed in another cohort of patients
diagnosed with ASD [71]. A review of the medical examination
data from 25 autistic children found that 53% of these patients
had increased pyruvate levels, 76% had elevated blood lactate, in
20% of them the lactate/pyruvate ratio in fibroblasts was
increased, and 42% were presented with atypical results of urine
organic acid analysis [72].

Evidence of OXPHOS impairments in ASD patients, including
the disruptions of ETC activity, has also been gathered (Table 1).
The results of these studies are rather ambiguous. Thus, Graf et al.
have reported abnormally enhanced complex | activity in
mitochondria obtained from a skeletal muscle biopsy of an ASD
patient [73]. Meanwhile, Shoffner et al. have found that among the
skeletal muscle biopsies of 28 ASD children with mitochondrial
diseases, 50% had defects of complex I, 18% had combined
defects of complex | and Ill, another 18% were identified with the
combined defects of complexes |, lll, and IV, and 14% were with
defects of complex V [74]. Seventy-one percent of these children
had abnormal OXPHOS. Defects in complexes |, lll, IV, and V were
also reported in a few other studies on the mitochondria isolated
from autistic children [75-77]. The study on the brains of the
Mecp2-308 mouse model of ASD has shown a reduced ATP
production accompanied by a significant reduction in complexes |,
I, and V activities in the cerebellum and striatum of the mutant
mice [78]. These findings indicate that the most affected
component of OXPHOS in ASD patients is complex |, but
abnormalities in the activity of other complexes, such as
complexes lll, IV, and V, can also be found.

Clinical studies of ASD and experiments on animal and cellular
models of this disorder have revealed the biochemical endophe-
notype of insufficient mitochondrial energy production. This

Table 1. Impairments of the mitochondrial respiratory function in ASD patients.
Source (organs/tissues) Abnormalities in ASD related to mitochondrial respiration References
Blood * Increased levels of lactate [65-67,
* Increased lactate/pyruvate ratio 69, 70, 72]
* Increased levels of pyruvate [67, 70, 72]
+ Decreased levels of pyruvate [72]
+ Decreased activity of pyruvate dehydrogenase [71]
* Reduced levels of carnitine [81]
« Increased levels of carnitine [35, 66, 71]
- Elevated levels of alanine [72]
* Increased ammonia levels [69, 70]
[70]
Urine * Increased concentration of Krebs cycle metabolites [66, 69, 72]
* Presence of 3-methyl-glutaconic acid [69, 72]
« Presence of dicarboxylic acids [69, 72]
Brain + Decreased utilization of glucose [66]
* Reduced ATP levels [66]
* Increased levels of NO [64, 149]
Skeletal muscle +» Enhanced activity of complex | [73]
+ Defects of complex | (in 50% of ASD patients) [74]
» Combined defects of complexes | and Ill (in 18% of ASD patients) [74]
+ Defects of complex V (in 14% of ASD patients) [74]
+ Aberrations in OXPHOS (in 71% of ASD patients) [74]
+ Defects in complexes |, lll, IV, and V [77]
Lymphocytes * Defects in complexes |, lll, IV, and V [75]
Brain + Decreased activity of complexes | and V (in 30% of ASD patients) [81]
* Reduced activity of complex Ill (in 29% of ASD patients) [81]
* Reduced activity of multiple complexes (in 29% of ASD patients) [81]
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phenotype was manifested in the accumulation of lactic acid,
pyruvate, and carnitine, increased alanine aminotransferase and
aspartate aminotransferase levels in plasma [72], suppressed ETC
activity, and reduced mitochondrial membrane potential (¥,,,) [79].
Age-related metabolic changes were investigated in postmortem
brain samples of ASD patients by Chauhan et al. [80]. They found
that the major metabolic abnormalities and increased levels of
lipid hydroperoxides (the markers of oxidative stress) were
observed in children of 4-10 years old but not in adults. These
data suggest that autistic children of this age are particularly
vulnerable to ASD-related factors such as energy deficits and
oxidative stress. The following postmortem examinations of ASD
patients were carried out by this group [81]. This work found a
more than 30% decrease in the activities of pyruvate dehydro-
genase and complexes | and V in the frontal cortex of autistic
patients. Abnormal activity of complex lll was also identified in
29% of autistic brains, and 29% of them had defects in multiple
complexes [81]. Thus, some data disparity on the ASD-related
defects of OXPHOS complexes can be noticed. They could stem
from different methodological approaches and variability of
clinical manifestations in ASD patients.

Rossignol and Frye have performed a systematic review and
meta-analysis to investigate the prevalence of mitochondria-
associated genetic abnormalities in autistic children [35]. This
study revealed that 21% of the investigated cohort of ASD
patients carried mtDNA or nuclear DNA (nDNA) mutations related
to mitochondrial dysfunction. Other population-based studies
have found that ~7% of ASD patients had an OXPHOS dysfunction
[70, 72]. In 23% of these patients, mtDNA abnormalities were
observed [35]. It is not known whether the mtDNA mutations in
autistic patients are a cause or effect of ASD. However, a functional
role of mitochondrial disease in ASD phenotype has been
proposed by some researchers [74]. One of the best-known
mitochondrial diseases is mitochondrial encephalomyopathy,
lactic acidosis, and stroke-like episodes (MELAS) [82]. It has been
found that MELAS results from the A3243G mtDNA mutation
which appears to be linked to autism [83].

OXPHOS and mitochondrial integrity can also be affected by
the defects in the expression of nDNA encoding the mitochon-
drial proteins. Filipek et al. have identified two cases of ASD
children with an inverted duplication of chromosome 15q11-q13.
The authors suggested that the gene products of this chromo-
some are involved in complex Il regulation [84]. Genes in other
nDNA regions responsible for mitochondrial proteins may also
be implicated in the ASD phenotype. Thus, in a cohort of 235
ASD patients, the 7932 region, a candidate ASD region, was
investigated [85]. In this region, two single-nucleotide poly-
morphisms within the NADH-ubiquinone oxidoreductase 1 alpha
subcomplex 5 (NDUFA5) gene were strongly associated with
autism. NDUFA5 is a part of complex | of the ETC and its
mutations may contribute to ASD [86]. Wang et al. have analyzed
the whole exome from 903 autistic proband-mother-sibling trios
[87]. They found that the likelihood of heteroplasmic mutations
in non-polymorphic sites, the sites that may produce OXPHOS
abnormalities, is 53% higher in ASD children than in unaffected
siblings. Contrary t o this study, however, the mitochondrial
genome sequencing of ~400 proband-father pairs found no
evidence of a link between mtDNA mutations and ASD [88].
Collectively, genetic mutations related to mitochondrial dysfunc-
tions have been identified in autistic children. A significant
data disparity can be noticed in studies on ASD-related
genetic mutations, which can be associated with the diversity
of the autistic spectra. Whether these mutations have a causative
or associative role in the ASD phenotype remains to be
determined.

Taken together, unmistakable evidence has been gathered that
points to a strong link between autism and mitochondrial
respiratory dysfunction (summarized in Table 1).
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Role of mitochondrial Ca>" in ASD

Calcium signaling is a critical regulator of various mitochondria-
related cellular processes and functions in physiological settings.
Normally, the distribution of Ca>" in the cell and the intercellular
space is regulated by the mechanisms of Ca?>" homeostasis, and
mitochondria play a key role in these processes [89]. When
cytosolic Ca®" levels are increased, mitochondria become a high-
capacity storage for these ions contributing to the normalization
of Ca?" concentration [89]. Accumulation of Ca*" in mitochondria
stimulates the Krebs cycle and ATP production by OXPHOS [90].
Interestingly, it has been found that extramitochondrial Ca>" also
regulates mitochondrial metabolism. This is achieved by trans-
porting glutamate to the mitochondrial matrix through a
mitochondrial aspartate/glutamate carrier aralar [91, 92]. As
discussed above (in the section “Role of mitochondria in synaptic
transmission”), Ca>" signaling is involved in the accumulation of
mitochondria at the postsynaptic regions, where these organelles
participate in neuronal Ca®" buffering and support of neuro-
transmission [93]. Ca®" is implicated in the regulation of
neurotransmitter release from presynaptic nervous terminals.
Meanwhile, the neurotransmitters gamma-aminobutyric acid
(GABA) and glutamate participate in Ca®" signaling at postsynap-
tic neurons [93, 94]. For example, ionotropic glutamate receptors
represent ligand-gated calcium channels while GABA receptors
trigger calcium influx via voltage-gated calcium channels [94].
Hence, the subcellular distribution of Ca®* determines the fine
regulation of Ca®" signaling [95].

In neurodevelopmental conditions, including ASD, disruption of
Ca®’" homeostasis may cause detrimental effects on various
cellular processes [15]. Ca®" is not metabolized and an overload of
mitochondrial Ca*™ may break down the electrochemical proton
gradient resulting in a deficit of ATP followed by necrosis [89].
Mitochondrial Ca** overload also triggers apoptotic cell death by
increasing ROS production and opening the mPTP [96]. Impaired
Ca®" homeostasis can affect migration, proliferation, Purkinje cell
development, dendritic arborization, synapse formation, and
maintenance [94]. In addition, aberrant Ca®" signaling causing
mitochondrial dysfunction can adversely affect neurotransmitter
signaling and lead to excitation/inhibition imbalance [94, 97, 98].
All these adverse effects may contribute to ASD.

One of the triggers of Ca®™ release from the brain mitochondria
can be perisynaptic ATP bound to astrocyte receptors. These ATP
molecules cause depolarization of the inner mitochondrial
membrane (IMM) and generation of ROS [93]. Also, the release
of Ca>" from the mitochondria can be mediated by extracellular
ATP bound to microglial purinergic receptors. The abnormal
release of Ca®* from the mitochondria to the cytosol leads to the
activation of microglia, neuroinflammation, and finally, cell death
[29, 93]. Altogether, the dysbalanced regulation of mitochondrial
and cytosolic Ca®" cycling contributes to ASD pathogenesis by
causing mitochondrial dysfunction, cell signaling breakdown,
cytotoxicity, and oxidative stress. Here, we discuss the role of
oxidative/nitrative/nitrosative stress in ASD pathogenesis.

Mitochondrial ROS in ASD

ROS, at low levels, regulate various physiological functions,
including autophagy, immune system, cell differentiation, cell
survival, programmed cell death, and adaptation to hypoxia
[27, 99]. Normally, the excess of ROS in the mitochondria is
neutralized by the endogenous antioxidant system which
comprises several enzymes and non-enzymatic antioxidants
[100] including reduced glutathione (GSH), vitamins C, and E,
the Cu/Zn-superoxide dismutase (SOD) in the cytoplasm, and Mn-
SOD in the mitochondrial matrix, catalase in the peroxisomes,
glutathione peroxidase (GSH-Px), etc. Different isoforms of GSH-Px
are present in mitochondria. The mitochondrial GSH-Px1 converts
H,0, to H,0 via oxidation of GSH to oxidized glutathione (GSSG)
[101]. GSH-Px4 can also be found in the mitochondria. It
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neutralizes lipid hydroperoxides, products of oxidative damage to
the membrane phospholipids. Peroxiredoxin (Prx) 3, a cysteine-
dependent peroxidase enzyme, is also present in the mitochon-
dria, whereas Prx5 can also be found in the cytosol, in
peroxisomes, and in the nucleus [28]. The function of Prxs is to
oxidize H,O, to cysteine-SOH. Cysteine-SOH interacts with
another cysteine, producing H,0 and a disulfide bond. The latter
can be reduced by thioredoxin (Trx) 2, which is further reduced by
thioredoxin reductase [28].

GSH and other mitochondrial non-enzymatic antioxidants and
antioxidant enzymes determine the antioxidant capacity of the
cell [102]. Weakening of the endogenous antioxidant system leads
to uncontrolled ROS production that outweighs the antioxidant
capacity of the brain, causing developmental neurotoxicity. The
brain’s restricted antioxidant capacity, high energy demand, high
levels of transition metals, such as iron and copper, and a high
concentration of polyunsaturated fatty acids which can be
subjected to lipid peroxidation [103-105] make the nervous
system particularly vulnerable to oxidative stress [106]. Therefore,
neurons are the first cells that appear to be affected by oxidative
stress [28].

Oxidative stress is involved in a variety of neurodegenerative
diseases, such as Alzheimer's disease (AD), Huntington’s, and
Parkinson’s diseases [107-109], and neurodevelopmental disor-
ders, including ASD [28, 110, 111]. Signs of oxidative damage to
proteins, lipids, and DNA have been found in blood [35, 112], urine
[113], and post-mortem brain samples [79, 80] collected from
autistic individuals. For example, markers of enhanced oxidative
stress and diminished methylation ability, such as reduced S-
adenosylmethionine/S-adenosylhomocysteine and  GSH/GSSG
ratios, have been detected in the plasma of autistic children
[114-116]. Increased lipid peroxidation marker concentrations, 8-
isoprostane-F,,, have also been found in ASD patients [113]. These
results were consistent with the findings of elevated urinary levels
of the marker of lipid peroxidation, isoprostane F,,-VI, the marker
of platelet activation, 2,3-dinor-thromboxane B,, and the marker
of endothelial activation, 6-keto-prostaglandin F;, in 26 children
diagnosed with ASD [117]. Changes in the levels of plasma
biomarkers corroborate with the results of postmortem studies on
ASD patients. For example, accumulation of lipid hydroperoxides
[80], and increased oxidative DNA damage accompanied by
reduced levels of SOD [79] were observed in the brain of autistic
individuals. Here too, a decreased activity of glutathione-S-
transferase, GSH-Px, and glutamate cysteine ligase was found in
the postmortem examination of the cerebellum of autistic children
[118]. Manifestations of oxidative stress have also been reported in
the hippocampus and temporal cortex of ASD patients [119, 120].

The main source of ROS in the cell is the mitochondrial OXPHOS
[121]. Post-mortem studies of the autistic brain samples showed
abnormal changes in the steady-state levels of complexes I-IV in
the cingulate gyrus, cerebellum, thalamus, and temporal and
frontal cortex [79, 80, 86, 122]. The levels of complexes Ill and V
were found to be decreased in autistic patients. Others found that
complexes Il lll, and V in the temporal cortex and complex | in the
frontal cortex were downregulated in ASD subjects [80]. In another
work, Brodmann area 21 of the lateral temporal lobe was
investigated in ASD patients [79]. Brodmann area is important
for ASD symptoms because it is implicated in the processing of
language, auditory, and social perception [79]. This study also
identified decreased concentrations of complexes |, Ill, IV, and V
and weakened activities of complexes | and IV [79]. Another
postmortem study has supported these findings by reporting a
decreased expression of some subunits of complex |, lll, IV, and V
in the areas of the cingulate gyrus, motor cortex, and thalamus of
the ASD subjects [122]. Downregulation of ATP5A1, the ATP
Synthase F1 Subunit Alpha [123], and ATP5G3, the ATP synthase
FO complex subunit C3 [124], was observed in the postmortem
study of ASD patients in all examined regions [122], which could
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inhibit the activity of complex V [79] and promote the ETC
breakdown due to opening of the mPTP [125, 126]. In contrast, it
has been reported that in the neurons of mice with Fragile X
syndrome (FXS), ATP5G1, the ¢ subunit of Fy-ATP synthase, is
abnormally upregulated. This also results in the opening of the
mPTP leading to uncontrolled ROS production and disrupted
synaptic maturation causing autistic behaviors [127]. Thus, the
aberrant activity of the F;Fy-ATP synthase might be implicated in
ASD via the disrupted functioning of ETC. Overall, complex |
appears to be most affected in autistic patients whereas complex
Il is least affected [128]. Dysfunctional ETC, in turn, further
enhances ROS production and increases the disruption of the
mitochondrial respiratory function and mitochondrial integrity
[129]. Thus, unneutralized ROS produced in the brain mitochon-
dria of autistic individuals form a positive feedback, a vicious cycle,
leading to incrementally growing damage to the mitochondria,
which may ultimately result in cell death.

It is worth noting that children possess a weaker antioxidant
defense than adults [28, 130]. This makes oxidative stress a big risk
factor for ASD. It has been revealed that SOD activity in
erythrocytes of ASD children is significantly increased compared
to their typically developing peers [131]. The authors explained
this fact by a compensatory mechanism to counter the
detrimental effects of oxidative stress within the brain. Indeed, it
has been found that children diagnosed with ASD have reduced
levels of mitochondrial GSH and impaired mitochondrial respira-
tory function due to oxidative stress [35, 119, 132]. Various
oxidative stress markers, including lipid peroxide [80], malondial-
dehyde [133], a marker of oxidative DNA damage 8-hydroxy-2'-
deoxyguanosine [119], and protein carbonyls [134, 135] are
increased in ASD children. It has been revealed that oxidative
stress is involved in neuro-inflammation [136], cerebral injury
[137, 138], and neuro-dysfunction [136-138], leading to neurode-
velopmental disorders. Thus, the accumulating data indicate that
ROS contribute to ASD phenotype, although the mechanisms of
the oxidative injury and the weakening of the antioxidant system
remain obscure.

Role of reactive nitrogen species in ASD
Along with ROS, another important family of redox-active
molecules related to oxidative stress is reactive nitrogen species
(RNS). Nitric oxide (NO) is a free radical gas molecule produced
endogenously from L-arginine, oxygen, and NADPH by an enzyme
nitric oxide synthase (NOS) [139]. Three isoforms of NOS, neuronal
(NNOS), inducible (iNOS), and endothelial (eNOS) have been
identified. At low concentrations in physiological conditions, NO
production and inactivation are balanced [140]. NO is involved in
normal cell signaling, contributing to the regulation of various
physiological functions [141, 142] including activation of soluble
guanylyl cyclase (sGC) which generates cyclic GMP (cGMP) [143].
NO may exert therapeutic effects on the injured brain [144]. This
molecule can also stimulate mitochondrial biogenesis in different
organs, including the brain [145, 146]. However, at high
concentrations, when RNS levels exceed the capability of its
detoxification in the biological system, serious damage to cells
may occur [147, 148] due to inhibition of mitochondrial respiratory
function by competing with O, for interaction with cytochrome
oxidase [149] and via nitrative/nitrosative stress [150, 151].
Nitrative stress is directly related to oxidative stress. NO can
form peroxynitrite  (ONOO™) by reacting with O™ in the
mitochondria [152]. ONOO™ is a highly reactive molecule. It can
destroy lipids, DNA, and protein, and trigger apoptosis by
inducing cytochrome c release from the mitochondria [153]. The
OXPHOS functioning may also be affected by ONOO™ because it
can compete with oxygen for binding cites [154]. As a result, more
ROS and RNS are produced by the mitochondria. Autoxidation of
the mitochondrial NO can generate nitrogen dioxide (‘NO,) [140].
‘NO, and ONOO™ can nitrate various molecules. In proteins,
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tyrosine residues are often subjected to nitration with the
formation of 3-nitrotyrosine (NT) [155]. NT disrupts the hydrogen
bonds of proteins, impairing protein function [156, 157]. Nitrative
stress is common to ASD as seen by elevated levels of NT in
autistic patients [158].

Another important form of NO-related posttranslational mod-
ification (PTM) is protein S-nitrosylation (SNO), a product of the
interaction of NO with the sulfhydryl groups of cysteine which
leads to the formation of S-nitrosothiols [147, 159]. Normally, SNO
is maintained in the brain at a low level. It participates in the
modulation of the activity and localization of numerous enzymes
and receptors [147, 160, 161], takes part in the regulation of many
physiological processes in the brain [147, 162], including synaptic
plasticity [163, 164], axonal elongation, and neuronal survival
[147, 165]. This PTM also occurs in mitochondria, regulating the
OXPHOS and other mitochondrial functions [166]. However,
various neurodevelopmental disorder conditions, including ASD,
may cause steadily high levels of NO in the brain, promoting
abnormal SNO of mitochondrial proteins. This aberrant SNO can
lead to conformational changes and misfolding of the proteins
that affect their functions [167]. As a result, the aberrant protein
SNO may significantly affect neuronal functions, thereby con-
tributing to behavioral deficits in ASD.

In 1998, Lombard hypothesized that mitochondrial dysfunction
in ASD patients could be associated with excessive NO production
causing neurotoxicity [66]. Based on the work of Hibbs, et al. [168],
he proposed that NO may bind to the enzymes of mitochondrial
ETC, such as NADH succinate oxidoreductase, NADH ubiquinone
oxidoreductase, and cis aconitase and induce uncoupling of
OXPHOS followed by the inhibition of glycolysis [66] and
depletion of ATP in the cells [169]. The inhibition of mitochondrial
respiration leads to depolarization of the IMM, followed by the
opening of the mPTP and activation of apoptosis [170].

Lombard'’s hypothesis of the role of NO in ASD was confirmed
later in the animal models of ASD and autistic patients. Thus, we
have developed the SNOTRAP technology to study SNO-
proteome. Using this technique, we found a significant increase
in NO levels and a reprogramming of the SNO-proteome in the
brain of Shank3 InsG3680"'" mouse model of ASD [171]. Our
later studies on the Shank3”" and Cntnap2”~ knockout mice, the
human SH-SY5Y cell line, and the human induced pluripotent
stem cells-derived cortical neurons isolated from patients carrying
a SHANK3 mutation confirmed the increased levels of NO and
protein SNO [172-176]. Importantly, this work also revealed the
synaptic and behavioral abnormalities in these models of ASD
[172, 173, 175] that were reversed by the selective nNOS inhibitor
7-nitroindasole [172, 173]. Our results were in line with the
postmortem data showing increased levels of NO in plasma [177]
and NT, the marker of nitrosative stress [178], in the brain of
autistic patients [179]. These data represent evidence of the
involvement of excessive levels of NO in the pathogenesis of ASD.

Numerous mitochondrial proteins contain essential thiol
residues. These thiols form S-nitrosoglutathione (GSNO) and SNO
upon direct interaction with NO and by transnitrosation reactions
with other SNO proteins [180]. Our recent SNO-proteome analysis
of the cortices of Shank3 InsG3680*) mutant mice showed that
several mitochondrial processes, including the ATP metabolic
process, transmembrane electron transport, and the cellular
response to oxidative stress, were SNO-enriched [64]. The aberrant
SNO of the mitochondrial proteins is likely to lead to mitochon-
drial dysfunction and contribute to ASD pathogenesis.

Overall, the above studies point to the significantly increased
levels of NO and products of its redox reactions in the
mitochondria in the ASD animal models and autistic patients.
Along with oxidative stress, these abnormal molecular changes
lead to impaired mitochondrial respiratory function, ATP deple-
tion, and various destructive cellular processes, such as mitochon-
drial fission, mitophagy, and programmed cell death, as we
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discuss below. These data indicate that NO-associated redox
reactions occurring in the mitochondria play an important role in
ASD, although the exact mechanisms implicating NO in this role
need further investigation.

Mitochondrial permeability transition pore in ASD

Under physiological conditions, the IMM is impermeable to most
molecules and ions. Only a few essential ions and metabolites can
move through the pores of the IMM, thereby maintaining the ¥,
and pH gradient required for ATP synthesis by OXPHOS. [181].
However, this membrane contains a non-specific pore, called the
mPTP, which allows any molecule of <1.5kDa to move freely
across the IMM [182]. The exact molecular structure of this pore
remains obscure and its physiological functions have not been
well established [183]. Based on the analysis of the literature on
the mitochondrial Ca®" regulation in cyclophilin D (SypD)-
deficient mice and neurons, Rizzuto et al. concluded that in
physiological conditions, mPTP takes part in Ca>" homeostasis by
mediating Ca®" efflux from the mitochondria '°. Normally, this
pore can be open for a short time. This is now called a flickering
mPTP. It is characterized by the release of small portions of Ca®"
and ROS from the mitochondria [184], prompting a short-term
depolarization of the IMM that activates the ETC and inhibits ROS
production by the mitochondria [185]. In the nervous system, Ca®*
release into the cytosol through the mPTP activates neurotrans-
mitter release by triggering vesicle exocytosis [186, 187].

However, when the levels of Ca®" in the mitochondrial matrix
are high, especially during oxidative stress, as often observed in
ASD patients, mPTP remains open for a longer time. This results in
two main outcomes. First, it leads to unrestricted movement of
ions through the IMM, which brings about OXPHOS uncoupling
and ATP production halting. Furthermore, ATPase starts acting in
reverse mode, carrying out ATP hydrolysis instead of its synthesis
[181]. As a result, the ETC functioning is disrupted, and ATP
content becomes significantly depleted, which breaks down
metabolic and ionic homeostasis and activates the degradative
enzymes such as nucleases, proteases, and phospholipases
[182, 188]. Furthermore, the dysfunctional ETC produces more
ROS due to incomplete oxygen reduction, damaging all kinds of
mitochondrial proteins [129].

Second, non-specific permeability to any small molecules
provided by the opening of the mPTP triggers mitochondrial
swelling [189]. The ions and small molecules move across the IMM
following the concentration gradient. This causes an osmotic
imbalance between the cytosol and the matrix and increases
colloidal osmotic pressure. The high molecular weight proteins of
the mitochondrial matrix, which cannot move through the mPTP,
also contribute to the increased colloidal osmotic pressure. As a
result, the water moves into the matrix making the mitochondria
swell [181]. Unfolding the cristae helps the matrix to expand and
the IMM remains intact. Meanwhile, the outer membrane will
rupture, and proteins, such as cytochrome ¢ and apoptosis-
inducing factor (AIF), will be released from the intermembrane
space into the cytosol, triggering apoptosis [190, 191]. Eventually,
this may result in cell death from the destructive cellular
programs. Let us review the main types of programmed cell
death and their roles in ASD.

Programmed cell death in ASD

Apoptosis removes the damaged cells and cellular components in a
highly regulated, programmed fashion. Apoptosis is also a
necessary tool for development, including brain development.
Two main pathways can trigger this process, the intrinsic, also
called mitochondrial pathway, when apoptosis is initiated by the
internal signals of mitochondrial origin, and the extrinsic when
apoptosis is activated by external stimuli [16]. Both pathways act
through a caspase activation cascade. The intrinsic pathway can
be triggered either as a result of mPTP opening, or activation of
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Fig.2 Mitochondria-related mechanisms of regulation of autophagy and apoptosis. ADNP activity-dependent neuroprotective protein, Akt
protein kinase B, Ambra1l activating molecule in Beclin1-regulated autophagy, AMPK AMP-activated protein kinase, ATG autophagy-related
protein, Bcl-2 B-cell lymphoma 2, Beclin1 BEC-1 in the C. elegans nematode, Bif1 Endophilin B1, FIP200 family interacting protein of 200 kDa,
Foxk1/2 forkhead/winged helix family k1/2, FoxO3 Forkhead box O3, GFAP Glial fibrillary acidic protein, GFAP Glial fibrillary acidic protein, GSK
glucose synthase kinase, Mcl-1 Myeloid cell leukemia-1, mPTP mitochondrial permeability transition pore, NAP ADNP microtubule end binding
protein motif, NO nitric oxide, OMM outer mitochondrial membrane, PI3K phosphatidylinositol-3-kinase, Pink1 PTEN-induced kinase 1, ROS
reactive oxygen species, TSC1/2 tuberous sclerosis complex 1/2, Ubq ubiquitin, ULK1 unc-51-like autophagy-activating kinase 1, VDAC1
voltage-dependent anion channel 1. === Activation/upregulation/transcription. s} Inhibition/downregulation. Molecules, protein
complexes, and processes that regulate both autophagy and apoptosis. *, molecules and protein complexes involved in the regulation of both
autophagy and apoptosis.

the proapoptotic proteins of the B-cell ymphoma 2 (Bcl-2) family,
Bax and Bak [192] after the removal of the block of antiapoptotic
proteins Bcl-2 and Bcl-XL [193]. This makes the outer mitochon-
drial membrane (OMM) permeabilized. The mitochondrial mem-
brane permeabilization results in the release of the proapoptotic
factors from the mitochondrial intermembrane space, cytochrome
c [194], AIF [195], and endonuclease G [196], to the cytosol.
Cytochrome ¢, apoptosis protease activating factor 1 (APAF-1), and
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pro-caspase 9 form a protein complex called apoptosome [197].
The apoptosome activates caspase 9, which activates effector
caspases, leading to the completion of apoptosis (Fig. 2). AlF [195]
and endonuclease G [198] trigger DNA fragmentation followed by
chromosomal condensation.

Apoptosis is an essential process for normal brain development.
Meanwhile, abnormal apoptosis may result in neuroanatomic
aberrations leading to ASD [199]. Evidence has been documented
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by postmortem studies pointing to the increased apoptotic
activity in autistic individuals. These studies found a significantly
depleted Bcl-2 content and increased levels of cathepsin D, p53,
and caspase-3 in different brain areas of ASD patients [16,
200, 201]. The premature arrest of brain growth in children with
ASD has been observed [202], which can also be explained by
abnormal activation of apoptosis. Recently, we have performed a
systems biology analysis of the SNO-proteome in the Shank3
InsG3680* mouse model of ASD [64]. This study revealed a
significant SNO enrichment of the apoptotic processes in neurons.
We also found S-nitrosylation of the voltage-dependent anion-
selective channel protein 2 (VDAC2) in the Shank3 mutant mice
[64]. VDAC2 is an important component of the mitochondrial
apoptotic signaling cascade [203] and is activated by SNO [204].
We proposed that SNO-induced activation of VDAC2 may
contribute to the mitochondria-related autistic symptoms [64].
Overall, the results of this study are consistent with the above data
on the elevated apoptotic activity in ASD that is tightly related to
mitochondrial dysfunction [16].

Over the last decade, novel cell death pathways were
discovered, including necroptosis, ferroptosis, cuproptosis, etc.

Necroptosis. In contrast to conventional necrosis, which repre-
sents unprogrammed cell death induced by cellular damage,
necroptosis is an apoptosis-independent programmed form of
necrosis or inflammatory cell death [205, 206]. The signaling
pathway of necroptosis has been largely elucidated [207]. This
pathway involves the activation of tumor necrosis factor-alpha
(TNFa), followed by its receptor TNFR1 stimulation on the cell
membrane. TNFR1 binds to several proteins, including tumor
necrosis factor receptor type 1-associated death domain (TRADD),
TNFR1-associated receptor-interacting protein kinase, also called
receptor-interacting protein kinase (RIPK), and TNF receptor-
associated factor 2 (TRAF2) [208]. When caspase-8 activity is
inhibited, TRAF2 prompts RIPK1 to bind RIPK3 with the formation
of a necrosome complex also known as ripoptosome [209]. The
ripoptosome phosphorylates mixed-lineage kinase domain-like
protein (MLKL), and the phosphorylated MLKL activates mitochon-
drial ROS production. Then, MLKL translocates to the plasma
membrane, causing the loss of membrane integrity and cell death
[205].

Bollino et al. [210] have described an alternative calpain-
dependent pathway of necroptosis induced by valproic acid (VPA)
in the neuronal cell culture. VPA, a histone deacetylase inhibitor, is
used for the treatment of mood disorders and epilepsy. However,
this drug has been found to exert neurotoxic effects. The study
found that this pathway begins with the activation of c-Jun-N-
terminal kinase 1 (JNK1) and increased receptor-interacting
protein 1 levels (RIP-1). This leads to the cleavage and transloca-
tion of AIF from the mitochondrial intermembrane space to the
nucleus, phosphorylation of the histone H2A family member
H2AX, mitochondrial release of the death-inducing protein Smac/
direct IAP-binding protein with low PI (DIABLO), and inhibition of
the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP).
This pathway can be inhibited by the cell-survival signaling
pathways mitogen-activated protein kinase kinase (MEK)/extra-
cellular signal-regulated kinase (ERK) and phosphoinositide
3-kinase (PI3K)/Akt (protein kinase B), which may protect the cells
against the cytotoxic effects of VPA [210]. It is worth mentioning
that VPA is also used for generating an environmental model of
ASD by injecting this agent into pregnant mice [211, 212].

Necroptosis can also be materialized as a result of activation of
the signaling pathways, due to DNA damage, which leads to the
release of apoptosis-related factors from the mitochondrial
intermembrane space, followed by the activation of the DNA
damage-related enzyme poly(ADP-ribose) polymerase (PARP)
[213]. In addition, Wang et al. investigated the proximal signaling
cascade and found that the mitochondrial phosphatase
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phosphoglycerate mutase family member 5 (PGAMS5) is also
involved in various pathways of regulated necrosis via interaction
with another mitochondria-related protein dynamin-related pro-
tein 1 (Drp1) [213, 214]. A new insight into the role of
mitochondria in necroptosis was offered by Zhang et al. [215].
They performed experiments on human hepatic L02 cells treated
with CdCI2 and found that Drp1 and retinoblastoma (RB) protein
levels were increased and translocated to mitochondria in CdCl,-
treated cells. Necroptosis and the upregulation of Drp1 and RB
were alleviated by the DNMIL silencing using a siRNA or
pharmacological inhibition of Drp1. The authors concluded that
RB directly interacts with Drp1 at mitochondria and forms a
complex that enhances the formation of necrosome by binding to
RIPK3 [215].

Summarizing the data on the mechanisms of necroptosis, it can
be noticed that this kind of programmed cell death requires
mitochondrial and cytosolic ROS [216, 217]. Necroptosis is
characterized by the excessive accumulation of the products of
oxidative stress, such as lipid hydroperoxides [218], end products
of glycation [219], and increased activity of bioenergetic pathways,
including glutaminolysis [220, 221]. The signaling pathways
related to necroptosis include different mitochondria-related
proteins, such as Drp1, AIF, PGAM5, and others. Thus, mitochon-
dria play a central role in the mechanisms of this form of
programmed cell death [222]. In the context of this review, it is
important to note that necroptosis is implicated in ASD
pathogenesis. This was recently confirmed by Liu et al. [223].
They carried out a machine-learning and single-nucleus RNA
sequencing study of autistic children and reported on the
differentially expressed necroptosis-related genes in these
patients [223].

Ferroptosis is another recently discovered iron-dependent process of
programmed cell death, [224]. It is genetically and biochemically
distinct from other forms of regulated cell death [225]. The
mechanism of ferroptosis is based on severe iron-dependent lipid
peroxidation and ROS [226, 227]. Ferroptosis does not require a
specific pro-death signaling pathway but is triggered sponta-
neously when the protection of cellular membrane phospholipids
from peroxidation by the metabolites and enzymes, including
cysteine and glutathione peroxidase 4 (GPX4), are weakened
[228, 229]. Gao et al. have found that mitochondria play a central
role in cysteine deprivation-induced ferroptosis [230]. They
hypothesized that cysteine deprivation impairs the ETC activity
and Krebs cycle, leading to hyperpolarization of the IMM followed
by lipid peroxidation [230].

Interestingly, cysteine deprivation and activation of necroptosis
are associated with the augmented activity of glutaminolysis
[231], which fuels the mitochondrial Krebs cycle through the
conversion of glutamate to a-ketoglutarate [232]. It has been
found that the mitochondrial glutaminase 2 (GLS2), and not the
cytosolic GLS1, appears to be involved in ferroptosis [232, 233]. It
has also been shown that ferroptosis causes marked morpholo-
gical changes to mitochondria, such as shrinking, cristae
disappearance, disruption of OMM, and increased bilayer mem-
brane density [234, 235]. Finally, some strong ferroptosis inhibitors
target exclusively mitochondria [236]. All these facts point to the
key role of mitochondria in ferroptosis, particularly because this
process is related to cysteine deprivation.

This form of programmed cell death has been identified in
various pathologies, including cardiovascular diseases, cancers,
kidney diseases, and brain disorders [237, 238]. The accumulating
data of animal experimentation involving interventions targeting
ferroptosis are promising in terms of the perspective of the
symptoms reversal and inhibition of the disease progression [238].
Several studies have found a link between ASD and ferroptosis
[239]. Thus, Wu et al. [240] have recently shown that selenium can
alleviate autistic behaviors in the BTBR mouse model of ASD by
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inhibiting ferroptosis via activation of the nuclear factor erythroid
2-related factor 2 (Nrf2)/GPX4 signaling pathway. Another study
has identified four key ferroptosis-related genes that might be
used as biomarkers for early diagnostics of ASD, although the
diagnostic criteria for ASD based on these findings still need to be
validated. They also found that piperaquine, an anti-malarial drug,
has the potential as a drug for ASD due to its ability to interact
with ferroptosis-related genes [241].

Taken together, various cell death pathways exist that in
physiological conditions take part in the fine processes of
development, differentiation, and removal of damaged or
unfunctional cells and subcellular structures, or harmful micro-
organisms. However, in individuals suffering from different
neurodevelopmental disorder conditions, including ASD, these
pathways can be hyperactivated, causing irreversible damage to
the organism. It is important to note that mitochondria are
indispensable in all types of cell death, and consequently, in ASD
pathogenesis.

Mitochondria-related mechanisms of regulation of autophagy
and apoptosis in ASD

Normally, the brain maintains a balance between the synthesis
and degradation of cellular components in [242]. Removal of the
dysfunctional proteins, organelles, and cells is necessary for
preserving cellular homeostasis, and this is achieved by the
processes of autophagy and programmed cell death, including
apoptosis. These processes are essential for human brain
development because they represent a quality control system
that prevents brain contamination with the toxic products of
damaged molecules and cellular structures [243]. It should be
noted that in physiological conditions, not only are the processes
of synthesis and degradation balanced, but different degradation
processes are also finely tuned to ensure the safe disposal of their
products. However, the accumulated data indicate dysregulation
of autophagy and apoptosis in neurodevelopmental disorders. On
the one hand, a growing body of evidence points to autophagy
deficiency in ASD [242, 244-246]. On the other hand,
mitochondria-related mechanisms of apoptosis activation prevail
over the antiapoptotic mechanisms in this disorder [16, 158, 199].
This disbalance results in the accumulation of the toxic products
of apoptosis in the brain leading to behavioral abnormalities
[158, 243]. Furthermore, many components of the apoptosis and
autophagy pathways interact with each other and thus affect each
other’s activity and expression [247].

In this section, we discuss the mechanisms of autophagy and
apoptosis regulation, and the interplay between these two
processes in the context of ASD. The findings on the
mitochondria-related signaling mechanisms modulating these
processes are presented in Fig. 2.

Regulation of autophagy. Autophagy is a process of degradation
of the cell components, including proteins and organelles. This
process comprises encapsulating debris in double-membrane
autophagosomes, followed by fusion of autophagosomes with
lysosomes [248]. Autophagy deficiency in neurons results in
buildup of ubiquitinated proteins, dystrophy of neural terminals,
impairments in synaptic transmission, and eventually, neurode-
generation observed in both neurodegenerative and neurodeve-
lopmental disorders [245, 249, 250]. A post-mortem study by Tang
et al. has found autophagy deficiency in the temporal cortices of
ASD patients [251]. Importantly, this work also revealed impaired
synaptic pruning and ASD-like behavioral phenotype in mice
lacking neuronal autophagy. It is now commonly appreciated that
impairments in autophagy are implicated in ASD pathogenesis
[242, 245, 252].

The origin of autophagosomes in the cell has not been well
established. However, the accumulating data indicate that
mitochondria are involved in the biogenesis of autophagosomes.
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In mammals, the key autophagy-regulating proteins, Bcl-2 and
Beclin1, are localized to the endoplasmic reticulum and mitochon-
dria [253]. Autophagy is initiated by the autophagy-activating
protein complex that includes the UNC-51-like kinase (ULK1),
autophagy-related protein 13L (ATG13L), family interacting
protein of 200 kDa (FIP200), and ATG101 [254]. In conditions of
nutrient depletion, ULK1 is activated, which leads to phosphoryla-
tion of the components of the Class Il PI3K vacuolar protein
sorting 34 (VPS34) protein complex, resulting in the formation of
autophagosome and promoting the autophagy flux [255].

The major regulator of autophagy is the mechanistic (also
known as mammalian) target of rapamycin (mTOR) signaling,
which is closely associated with the activity of mitochondria.
Activation of mTOR leads to inhibition of autophagy [248],
generally observed in ASD patients [242, 245, 251, 256]. Normally,
mTOR is activated in the background of high levels of nutrients
and energy substrates [257, 258]. In ASD, however, mTOR appears
to be overactivated even at low energy and nutrient levels
[176, 251, 259, 260]. The mechanisms of this phenomenon remain
unclear. However, the accumulated data suggest that the over-
activation of this signaling system could stem from inactivation or
genetic ablation of the tuberous sclerosis complex (TSC)
[261, 262], the master negative regulator of mTOR. TSC2 forms a
heterodimeric complex with TSC1 that suppresses the mTOR
complex 1 (mTORC1) activity by inhibiting the small GTPase Rheb,
an essential mTORC1 activator [263].

Insufficient ATP production by the mitochondria and nutrient
depletion activate the AMP-activated protein kinase (AMPK) [253],
which initiates autophagy by phosphorylating and activating the
components of the autophagy-activating protein complex and
inhibiting the activity of mTORC1. The mTORC1 inhibition by
AMPK is accomplished by direct phosphorylation of the
regulatory-associated protein of mTOR (Raptor) [264] and
indirectly via activation of TSC2 [265, 266]. At high nutrient and
ATP levels, AMPK activity is inhibited, and mTORC1 phosphor-
ylates ULK1 and ATG13L of the autophagy-activating protein
complex and thus suppresses autophagy [267, 268].

Upon cellular stress, characteristic of ASD [158], ROS production
and elevated intracellular Ca®" concentration trigger mPTP
opening leading to mitochondrial membrane permeabilization
(MMP) [181], initiating apoptosis and necrosis [269], and regulat-
ing the activity of autophagy [270, 271]. The MMP results in the
loss of Ay, which prevents the degradation of the voltage-
sensitive PTEN-induced kinase 1 (Pink1) [272-274]. This leads to
Pink1 accumulation on the OMM, which promotes the recruitment
of the E3 ligase Parkin to mitochondria [275, 276]. Parkin
ubiquitinates various mitochondrial proteins [253, 277]. It has
been suggested that this PTM of the mitochondrial proteins
enables the recruitment of the autophagy adaptor p62, leading to
the autophagosomal degradation of the damaged mitochondria
[12, 278, 279]. In experiments on the human epithelial (HelLa) and
SH-SY5Y neuroblastoma cells, Geisler et al. have found that during
MMP, p62 may induce autophagy by binding to the ubiquitinated
VDACT1 protein localized on the OMM [278]. In contrast, Moscat
and Diaz-Meco have shown that p62 activates Raptor of mTORC1
leading to the inhibition of autophagy [280]. Indeed, p62 is a
versatile multifunctional protein that can cause opposite effects.
On the one hand, it works as an autophagy adaptor, which targets
ubiquitinated proteins to the autophagosome for consequent
degradation. On the other hand, it acts as an interacting hub for
various signaling pathways, including the mTORC1 pathway [281],
which inhibits autophagy. Furthermore, p62 is also an autophagy
substrate, and it is used as an autophagy marker [280].

Scherz-Shouval et al. have revealed that the antioxidants N-
acetyl-L-cysteine and catalase abrogated the starvation-induced
autophagy of the Chinese hamster ovary (CHO) and Hela cells
[270]. They identified the autophagy protein ATG4 as a sensor of
H,O, during starvation. The authors hypothesized that H,0,
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formation in the mitochondria results in the inactivation of ATG4,
promoting ATG8 lipidation, and thus, activation of autophagy.
H,0, can also regulate autophagy by modulating the activity of
mTORC1. A recent study has shown that the effect of H,O, on
mTORC1 is dose-dependent. Low doses of this kind of ROS
activate while high doses inhibit mTORC1 activity [271].

It is worth mentioning that aberrantly increased levels of NO,
RNS, and NO-related PTMs, including SNO, can also significantly
affect autophagosomal biogenesis. We have produced a large-
scale computational biology analysis of the SNO-proteome in the
cortex of Shank3 mutant mice (a popular model of ASD
[171, 282, 283]) and found that among the NO-related molecular
alterations, the most prominent change was the activation of the
mTOR signaling pathway [171, 176]. Meanwhile, previous studies
have reported that NO can disrupt autophagy by the SNO of
different proteins, including the components of the mTOR
signaling pathway [284].

Cecconi et al. have revealed that the activating molecule in
beclin1-regulated autophagy (Ambra1) localized to mitochondria
may also contribute to autophagosome formation by interacting
with Beclin1 [285]. Experiments have shown that female mice
lacking Ambra-1 displayed autism-like behavior, supporting the
findings of inhibited autophagy in ASD [286]. The Bax-interacting
factor 1 (Bif-1, also known as Endophilin B1) is also an autophagy-
activating protein associated with mitochondria [287, 288]. Bif-1
cycles between the cytosol and mitochondria, and during stress it
accumulates on the OMM [288], activating autophagosomal
biogenesis by interaction with Beclin1 [287]. Bif-1 is also known
to activate Bax and Bak during cellular stress, which leads to the
activation of apoptosis [289].

Another important player in the regulation of autophagy is the
activity-dependent neuroprotective protein (ADNP) [290] discov-
ered by Gozes' group in 1999 [291]. ADNP and its microtubule
end-binding protein motif NAP interact with Beclin1 enhancing
autophagy. It has been found that ADNP mutation is one of the
most frequent genetic causes of ASD [292] resulting in the
decreased activity of autophagy [290, 293]. NAP has also been
shown to have antioxidative [294] and antiapoptotic properties
[295].

The role of mTORC2 in the regulation of autophagy is less
investigated than mTORC1. Nevertheless, the studies indicate the
mTORC2 involvement in regulating this process. mTORC2
phosphorylates and activates Akt at Ser473. Glucose synthase
kinase 3B (GSK-3B) prevents Akt activation via inhibitory
phosphorylation of the rapamycin-insensitive companion of mTOR
(Rictor). Once activated, Akt, one of the main downstream targets
of mTORC2 [296], induces inhibitory phosphorylation of the
positive regulators of autophagy Beclin-1 [297], forkhead box O3
(Fox03) [257], and glial fibrillary acidic protein (GFAP) [298].
mTORC2 also phosphorylates SGK-1 at Ser422, leading to
inhibitory phosphorylation of FoxO3 and other activators of
autophagy, such as VDAC1 and ULK1 [296]. Meanwhile, mTORC1,
in nutrient-rich conditions, activates forkhead box K1/2 (FoxK1/2)
which counters Foxo3-induced activation of autophagy by
restricting the acetylation of histone H4 and expression of critical
autophagy genes [299].

Regulation of apoptosis. Mitochondria play a crucial role in the
regulation of apoptosis, as reviewed above, and mTOR signaling
represents an integral part of these regulatory mechanisms. The
mitochondria/mTOR signaling system can induce both inhibitory
and activating effects on apoptosis. Thus, mTORC1 promotes the
nuclear translocation of the cAMP response element-binding
protein (CREB) which stimulates the transcription of the anti-
apoptotic gene MCL-1 in the nucleus and the upregulation of the
Bcl-2 family protein myeloid cell leukemia 1 (Mcl-1) [300]. Also,
mTORC1 activates the ribosomal protein S6 kinase beta-1 (S6K1)
and the eukaryotic translation initiation factor 4E-binding protein
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1 (4E-BP1), promoting the translation of MCL-7 mRNA on
ribosomes and the synthesis of Mcl-1 [301]. Mcl-1 inhibits
apoptosis through the inhibition of Bax. Also, in the experiments
on human breast cancer cells, Won and Seo found that the
inactivation of PI3K/Akt/mTORC1 signaling pathway promotes the
expression of caspases and Bax leading to increased apoptosis
[302]. Cellular stress, often observed in the autistic brain [158],
activates p53, which inhibits the activity of mTORC1 via AMPK and
TSC2 activation [303]. However, p53 can be activated by mTORC1
[304], causing the translocation of Bax to the mitochondria and
initiating apoptosis [303]. Also, p62 recruited to the damaged
mitochondria ubiquitinates Mcl-1, leading to its degradation and
activation of apoptosis [305]. GSK-3 also mediates the ubiquitina-
tion and degradation of Mcl-1. This can be inhibited by mTORC2,
leading to the suppression of apoptosis and support of autophagy
[306]. Additionally, ATG12 can support apoptosis via direct
inhibition of Bcl-2 and Mcl-1 [307]. The opposing effects of mTOR
signaling on apoptosis may depend on the distinct pro-apoptotic
stimuli. However, these mechanisms warrant further investigation.

Taken together, it can be noted that mitochondria play an
integral role in both autophagy and apoptosis, the processes
implicated in various forms of brain with neurodevelopmental
disorder, including ASD. The accumulated data indicate that
mitochondria, mTOR, and autophagy may represent an integral
regulatory axis during ASD [16, 251, 253, 308]. Meanwhile, in our
opinion, programmed cell death, particularly apoptosis, could be
added to this axis because the mechanisms of apoptosis and other
forms of programmed cell death are inextricably linked to the
mitochondria, mTOR, and autophagy. Many mitochondria-related
regulatory proteins and protein complexes display dual functions
by affecting the activity of both autophagy and apoptosis. For
example, proteins such as p53, p62, GSK-3p, Bif1, Bcl2, Mcl-1, and
others regulate both autophagy and apoptosis. The proteins with
dual functions are marked in Fig. 2 with an asterisk.

Mitochondrial dynamics and mitophagy in ASD

Mitochondria are not static, they continuously change their
morphology and distribution over the nervous system to match
the current needs of the cells [309, 310]. The constant change of
mitochondrial shape is referred to as mitochondrial dynamics,
which includes fusion and fission. These processes are regulated
by specific mitochondrial proteins [310]. Mitochondrial fusion is
necessary to repair cell damage, form networks, and exchange
genetic information [311]. It is triggered by the GTPases mitofusin
1 (Mfn1) and mitofusin 2 (Mfn2), located in the OMM. These
proteins are located on the IMM and interact with the optic
atrophy protein 1 (Opal). Opal also participates in cristae
formation [312]. It has been found that the knockout of Mfn2
leads to neurodegeneration due to oxidative stress in the brain
[313].

The physiological role of fission is to create new mitochondria
and to remove damaged and unfunctional parts of mitochondria
during severe cellular stress [309, 314]. The process of fission is
mediated by the GTPase dynamin-related protein 1 (Drp1). This
protein is normally located in the cytosol. When recruited, it
becomes oligomerized and is transported to mitochondria where
it interacts with protein adaptors, such as the mitochondrial fission
factor (Mff), the mitochondrial fission protein 1 (Fis1), the
mitochondrial dynamics protein 49 (MiD49/MIEF2), and the
mitochondrial dynamics protein 51 (MiD51/MIEF1) [315].

Drp1 undergoes several post-translational modifications. In
neurons, cyclin-dependent kinase 1 (CDK1) phosphorylates Drp1
at Ser616 activating mitochondrial fission. Phosphorylation of
Drp1 at Ser637 by Ca®"/calmodulin-dependent protein kinase la
(CaMKla) and protein kinase A (PKA) has an opposite, inhibitory
effect on mitochondrial fission [316, 317]. SNO of this protein leads
to its phosphorylation at Ser616, and thus, activation of fission in
hippocampal neurons [318]. Fragmented mitochondria activate
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mitophagy, the mitochondria-specific form of autophagy aimed at
removing damaged mitochondria [319-321]. Pink1l and the
cytosolic E3 ubiquitin ligase Parkin are the key regulators of
mitophagy. During mitochondrial stress, Pink1 located in the OMM
phosphorylates ubiquitin on Ser65. This results in the translocation
of Parkin to the mitochondria and initiation of mitochondrial
degradation [322, 323], which helps to maintain neuronal home-
ostasis [324]. The processes of mitochondrial fusion, fission, and
mitophagy are balanced in the normal brain. However, a different
picture can be seen in ASD patients.

In a postmortem study of the BA21 temporal cortex of ASD
patients, Tang et al. found increased levels of mitochondrial fission
proteins, Fis1 and Drp1, and reduced levels of fusion proteins,
Mfn1, Mfn2, and Opa1l [79]. These changes in protein expression
bring about the fragmentation of mitochondria and their
accumulation around the nucleus, which might deprive dendrites
and axons of mitochondria [318]. Increased fission caused by the
upregulation of proteins Fis1 and Drp1 normally promotes
mitophagy [309]. Surprisingly, Tang et al. reported an increase in
the levels of dysfunctional mitochondria and mitochondrial
membrane proteins, translocase of the outer mitochondrial
membrane 20 (Tom20), translocase of the inner mitochondrial
membrane 23 (Tim23), and porin in the ASD temporal cortex
without a change in the transcription of genes, such as PARK2,
responsible for the activation of mitophagy. These results indicate
that in ASD patients, a preponderance of mitochondrial fission is
coupled to impaired mitophagy [79]. Thus, ASD is characterized by
an imbalance of the processes of mitochondrial fusion, fission, and
mitophagy that leads to contamination of the brain with
dysfunctional mitochondrial fragments, insufficient energy supply
to the brain tissues, and as a result, impairments of memory and
synaptic function [187] contributing to ASD pathogenesis.

Mitochondrial and synaptic abnormalities in ASD-related
syndromes

The growing body of evidence reveals that the ability of
mitochondria to adapt to the changing environment and energy
demand is impaired in various ASD-related syndromes [325, 326].
This causes the breakdown of the neuronal and synaptic
development and function. In this context, let us discuss the
most common ASD-related syndromes.

Fragile X syndrome (FXS) [327] is the most common mutation-based
form of intellectual disability. Its prevalence rate accounts for
about 1 in 4000-5000 males and 1 in 6000-8000 females [328, 329].
FXS results from an expanded CGG repeat sequence, which may
include over 200 repeats (so-called full mutation) in the 5’
untranslated region of the FMR1 gene situated at Xg27.3. Most
females and males carrying FXS have behavioral deficits, including
those of ASD [330]. Genetic deletion of the Fmr1 gene leads to a
depletion of fragile X mental retardation protein (FMRP), resulting
in the activation of the metabotropic glutamate receptors mGIuR
[331, 332]. El Bekay et al. [333] found in the brains of Fmri-
knockout (KO) mice elevated levels of ROS, GSH, markers of
protein oxidation and lipid peroxidation in whole brains, and
increased production of NADPH oxidase in the prefrontal cortex,
cerebellum, and hippocampus. These data point to the involve-
ment of the Fmrl mutation in oxidative stress. Others found
decreased Mfn1, Mfn2, and Opa1 levels combined with increased
mitochondrial fission in primary neurons from Fmr1-KO mice [334].
A study involving the cortex of juvenile and adult Fmr7-KO mice
has revealed impaired mitochondrial energy metabolism. Acti-
vated OXPHOS complexes were found in the isolated cortical
mitochondrial membranes. However, ATP production was sig-
nificantly reduced in these mice [335]. Another study on
mitochondria isolated from the forebrain of Fmri-KO mice
confirmed the decreased respiratory function at complexes | and
I, and the opening of the mPTP. In this work, the authors were
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able to counter the increased proton leak and mPTP opening by
ubiquinone analogs [336]. Huber et al. discovered an elevation in
postsynaptic metabotropic GIuR type-I (mGIuRl) levels in mouse
Fmr1 KO hippocampal neurons. They hypothesized that FMRP
downregulates mGIuRl. Consequently, loss of FMRP results in an
aberrantly increased mGluRI expression in these neurons, leading
to enhanced mGluR-related long-term depression causing cogni-
tive impairments and intellectual disability. However, the increase
in mGluRs-dependent signaling in the mouse model of FXS was
not confirmed in human-based models, and clinical trials with
mGIuR inhibitors failed to produce a therapeutic effect in FXS
patients [331].

Thus, mitochondrial dysfunction has been identified in FXS and
its animal models. Some studies conclude on the causal link
between the Fmri-KO and abnormal expression of the synaptic
mitochondrial proteins. However, the mechanisms underlying the
synaptic and mitochondrial aberrations in FXS have yet to be
established.

Phelan McDermid syndrome (PMS) and Helsmoortel-Van der Aa
syndrome (HVDAS). PMS results from the loss of one functional
copy of the SHANK3 gene of chromosome 2213 [337]. Shank3 is a
scaffolding protein located in the postsynaptic density complex of
excitatory synapses. It binds to neuroligins and actin and regulates
actin polymerization, growth cone motility, dendritic spine
morphology, and synaptic transmission [283]. Therefore, SHANK3
mutations lead to various symptoms, including behavioral
symptoms of ASD. Indeed, deletions or mutations of the SHANK3
gene have been found both in patients with PMS, which occur in
over 50% of ASD patients [338], and in ASD patients outside the
PMS. SHANK3 mutations are likely to cause mitochondrial
dysfunction in PMS because six mitochondrial genes, including
NADH dehydrogenase 1 alpha subcomplex subunit 6 (NDUFA6),
cytochrome ¢ oxidase assembly (SCO2), tRNA  5-
methylaminomethyl-2-thiouridylate methyltransferase (TRMU),
thymidine phosphorylase (TYMP), carnitine palmitoyltransferase
1B (CPT1B), and aconitase 2 (ACO2), are adjacent to SHANK3 in the
22q913.3 region [339]. Frye et al. investigated the activity of
OXPHOS complexes in the saliva of 51 PMS patients and found
abnormal activity of complexes | and IV [339]. Yeunkum Lee et al.
have produced a proteomic analysis of synaptosomal Shank3
complexes isolated from the enhanced green fluorescent protein
Shank3 transgenic mice [340]. The cellular components categories
of the gene ontology analysis revealed terms like “mitochondrion”,
“myelin sheath”, and “cell junction”, indicating the link between
Shank3 and mitochondrial proteins [337]. Thus, the association of
Shank3 with mitochondrial proteins and processes, including the
mitochondrial ETC activity, has been established, although the
mechanisms connecting SHANKs and mitochondria at the
excitatory synapses remain unknown.

Shank3 can interact with other synapse-related autism-linked
proteins. One of these proteins is ADNP [293]. This protein is
essential for brain development and function [341, 342]. The
neurogenetic syndrome associated with ADNP mutation, HVDAS,
accounts for 0.17% of ASD cases and is therefore considered a
high-risk gene [292]. This gene’s mutations are believed to induce
ASD pathology by affecting the chromatin-remodeling ChAHP
[343] and SWItch/Sucrose Non-Fermentable (SWI/SNF) complexes
[344, 345] during embryonic development. It has also been found
that ADNP is involved in histone methylation [346] and acetylation
[347] upon interaction with proteins, such as the histone
deacetylase sirtuin 1 (SIRT1), which regulates the transcriptional
activity and epigenesis [293]. The cytoplasmic ADNP is also known
to interact with cytoskeletal microtubules (MTs) and MT-
associated proteins, including Tau and MT end-binding proteins
(EB1 and EB3), related to ASD pathology [293]. Interestingly, in
individuals with HVDAS, the ADNP-SIRT1-EB1/EB3 protein complex
may regulate autophagy, which is dysregulated and negatively
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affects mitochondrial metabolism in autism [344].

Gozes' group has found that ADNP mutations affect MT
dynamics and inhibit its interactions with Tau [348, 349],
producing a tauopathy-like phenotype manifested in increased
GSK-3f activity, Tau hyper-phosphorylation, and cognitive defi-
ciency [293]. Tauopathy is characteristic of the major neurode-
generative disease, Alzheimer's disease (AD) [349], where tau
protein is aberrantly hyperphosphorylated and forms bundles of
filaments [350]. Meanwhile, depositions of Tau are also associated
with ASD [351]. Interestingly, ADNP mutations were found in
postmortem AD olfactory bulbs and hippocampi [348]. These data
are consistent with the results of our recent work where we found
overactivation of mTORC1 signaling in the cortex of both ASD
(Shank3 InsG3680°7™) and AD (P301S) mouse models [176].
Meanwhile, evidence indicates that mTOR activation augments
tau pathology [352]. These somatic and signaling abnormalities
are accompanied by increased oxidative stress associated with
mitochondrial dysfunction both in ASD and AD [353]. Mitochon-
drial dysfunction has been recognized as an early pathogenic
event for ASD [354] and AD [355], which significantly impairs brain
function, as we discuss above. Collectively, there is a tight
interplay between the pathogenic mechanisms of ASD and AD.

Ivashko-Pachima et al. have revealed that ADNP protein
contains multiple Src homology 3 (SH3) domains crucial for the
ADNP-dependent regulation of microtubules. Mutations causing
the loss of these sites may adversely affect MT-associated proteins
and the interaction of these proteins with Shank3 [293]. This
group of researchers has also found that actin plays an important
role in ADNP/Shank3 interaction. Both of these molecules contain
actin-binding sites. Mutations of ADNP and SHANK3 impair the
binding of ADNP and Shank3 to actin leading to autistic behaviors,
anxiety, and depression due to synaptic dysfunctions [283, 293].
Thus, these two ASD-related synaptic proteins directly interact via
SH3-binding domains and indirectly through binding to actin,
determining the crosstalk between PMS and ADNP syndrome.

The DiGeorge syndrome, also called velocardiofacial or 22q11.2
deletion syndrome (22q11.2DS), is caused by a hemizygous
microdeletion (1.5-3 Mb) on chromosome 22. The prevalence rate
of this condition is ~1 in 4000 [356]. 22q11.2DS is characterized by
neuropsychiatric abnormalities, such as schizophrenia [357],
attention-deficit hyperactive disorder, anxiety, depression, and
ASD [358].

Importantly, Gokhale et al. have recently shown in a mouse
model of 22q11.2DS that mitochondria were damaged in cortical
layer 2/3 [359]. These organelles lacked cristae and had high levels
of ROS. Systems biology analysis showed that mitochondrial
pathways and compartments were strongly related to this
pathology. For instance, the authors found that the SLC25A1-
SLC25A4 mitochondrial transporter interactome was linked to
22q11.2 gene defect. Moreover, hemideficiency of the SLC25A1 or
SLC25A4 orthologues in Drosophila appeared to be associated
with abnormal synapse morphology, and deficits in synaptic
plasticity and neurotransmission [359]. Thus, 22q11.2 deletion,
which is related to ASD, is associated with both mitochondrial and
synaptic abnormalities. Similar results showing the link between
mitochondrial and synaptic dysfunctions affecting synaptic
transmission in animal models with 22q11.2 microdeletion were
also obtained by other researchers [360, 361].

Rett syndrome (RS) is caused by mutations in the gene methyl-CpG-
binding protein 2 (MECP2). RS is characterized by language and
communication problems, learning and coordination difficulties,
and they display autistic-like behaviors [362, 363]. Patients with
this syndrome may also have microcephaly and motor difficulties.
Children with RS grow slower than typically developing children
[364]. A mouse model with exons 3 and 4 deletions of the Mecp2
gene (Mecp2B) appears to have elongated mitochondria in the
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hippocampal axons and dendrites [365], and increased oxidative
stress seen by increased fluorescence of the redox probe roGFP1
both in the mitochondria and cytosol [366]. Oxidative stress in the
brain of Mecp2 mutant mice was also confirmed by another study
[367]. The mitochondrial function, as well as long-term potentia-
tion of the hippocampal neurons and astrocytes of Mecp2-KO
mice, were restored by the ROS scavenger Trolox [187, 368]. It has
been found that mitochondria isolated from the cortex and
hippocampus of this RS mouse model produce significantly more
ROS than those of WT mice [369]. Thus, the clinical and
experimental studies convincingly show the involvement of
mitochondrial abnormalities in RS, although the mechanisms
underlying the role of mitochondrial dysfunction need further
investigation.

RS brain does not display obvious manifestations of structural
neuronal or glial damage [370, 371]. Therefore, Boggio et al.
hypothesized that the neurological symptoms of RS could be
associated with abnormalities related to axons, dendrites, and
synapses [372]. This hypothesis is consistent with the postmortem
examination of the brain of RS individuals. These studies
demonstrated a decreased dendritic spine number in the cortex
[373] and hippocampus [374]. Importantly, autoradiographic
analyses in the basal ganglia and cortex of RS patients showed
reduced density of a-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionic acid (AMPA), N-methyl-D-aspartate (NMDA), and GABA
receptors [375]. These results imply that RS is related to
aberrations in both excitatory and inhibitory synaptic transmission
[3371.

Several RS animal model studies also indicated functional,
morphological, and molecular changes in synapses in the brain.
For example, the frequency of spontaneous excitatory synaptic
transmission (EPSCs) in the primary culture of hippocampal
neurons of Mecp2-KO mice was significantly decreased [376].
Also, autaptic hippocampal cultures produced from these
transgenic mice showed a decrease in both amplitude and
frequency of EPSCs, whilst neurons of Mecp2™' mice, with an
upregulated Mecp2 gene, had an opposite effect [377]. Following
these data, deletion of endogenous Mecp2 with a specific small
hairpin RNA interference reduced spine density after 96 h of
expression and decreased the number of mature-shaped dendritic
spines [374]. Results of others indicated that down-regulation of
Mecp2 for 5 days decreased neuronal dendritic complexity [378].
Overall, the results of these studies show that MECP2 gene
expression is necessary for normal synaptic development, the
balance between the excitatory and inhibitory neurotransmission,
morphology, and density of dendritic spines in the brain.
Expression and functioning of this gene support mitochondrial
function and redox balance. Consequently, mutations of the
MECP2 gene may result in synaptic and mitochondrial aberrations
leading to neuropathology, including ASD.

Angelman syndrome (AS), characterized by microcephaly, seizures,
motor dysfunction, and mental retardation, is a result of maternal
chromosome deletions in the region 15q11-q13 associated with
ubiquitin-protein ligase E3A (UBE3A) critical region [379]. UBE3A
encodes E6-associated protein (E6-AP), which acts as a cellular
ubiquitin ligase and establishes a covalent linkage between a 76-
amino acid ubiquitin molecule and its target protein to form a
polyubiquitylated substrate [379]. The AS-related E6-AP was found
in the nucleus, neuronal synapse, and presynaptic and post-
synaptic compartments of the cultured hippocampal neurons
[380]. Transcriptome analysis of the mouse cellular models of
Ube3a deficiency has revealed differential gene expression
associated with mitochondrial pathways [381]. Su et al. have
reported a defect of complex lll of OXPHOS in the brains of Ube3a
m-\p+ mice. This mitochondrial dysfunction was accompanied by
abnormal morphology of the brain mitochondria, and reduced
synaptic density [382]. Mitochondrial ROS, particularly O™ levels,
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appeared to be elevated in the hippocampal neurons of the Ube3a
m-\p+ mouse model, and CoQ10 analogs could attenuate
behavioral deficits in these mice [383, 384].

Cornelia de Lange syndrome (CdLS) is a rare congenital genetic
disorder. Associated symptoms typically include prenatal and
postnatal growth delay, a characteristic shape of the craniofacial
area, resulting in a distinctive facial appearance, and malforma-
tions of the upper limbs. Many infants and children with CdLS
have microbrachycephaly. Children with CdLS have autistic
features and mild to severe intellectual disability [385]. In
20-50% of cases, this syndrome is induced by a deletion in the
NIPBL gene on chromosome 5 (locus 5p13) [386, 3871. This gene is
responsible for the synthesis of delangin, a protein involved in
human development, particularly in the regulation of cohesin
complex [388]. CdLS can also stem from mutations on the SMC3
gene of chromosome 10 [389] and SMC1L1 gene [390]. Hundreds
of genes responsible for synaptic transmission, learning, and
behavior are deregulated in CdLS patients [391]. Interestingly, it
has been found that this syndrome can also be caused by a
mutation in the mitochondrial ribosomal protein MRPS22 with
deficiencies of OXPHOS complexes |, lll, and IV in fibroblast
mitochondria [392].

Smith-Lemli-Opitz syndrome (SLOS) is an autosomal disorder
associated with cholesterol biosynthesis. It is induced by muta-
tions in the gene encoding 3pB-hydroxysterol-A’-reductase
(DHCR7), the enzyme catalyzing cholesterol formation by
7-dehydrocholesterol reduction. SLOS patients display multiple
anatomic aberrations and intellectual disability, although the

phenotype of this syndrome is very diverse. SLOS patients are
characterized by cholesterol deficiency and increased levels of
cholesterol precursors and their metabolites [393, 394]. Previously,
a direct link between impairments of synapse formation and
neurite outgrowth was found in an astrocyte culture with impaired
cholesterol biosynthesis [395]. Indeed, cholesterol plays an
important role in synapse formation and function [396]. Therefore,
it is logical to suggest that synaptic dysfunctions occur in
individuals with SLOS. Cholesterol production also affects the
function of mitochondria. Chang et al. [397] found a significantly
increased accumulation of dysfunctional mitochondria in the
fibroblasts isolated from SLOS patients under steady-state
conditions compared to control cells.

Taken together, mitochondrial abnormalities are closely asso-
ciated with synaptic aberrations, including impaired synaptic
transmission, in various ASD-related syndromes of genetic origin
(Table 2). However, the relationships between mitochondria and
synapses, and the role of mitochondria in the pathogenic
mechanisms of these syndromes have yet to be established.

Conclusive remarks

Accumulating data reveal that the links between mitochondria
and the neurodevelopmental abnormalities leading to ASD are
multifaceted. This disorder is associated with mitochondrial
abnormalities of respiratory function, Ca?" cycling, ROS/RNS
production, mPTP opening, activation of different mechanisms
of programmed cell death, disbalance of the processes of
mitochondrial fusion, fission, and autophagy, and disturbances
in synaptogenesis and synaptic transmission which affect the

Table 2.

ASD- related syndrome Source

Fragile X syndrome (FXS)
FXS)

Phelan McDermid syndrome
(PMS)

Helsmoortel-Van der Aa
syndrome (HVDAS)

DiGeorge syndrome (DGS)

Oral cavity of PMS patients

Skin fibroblasts of HVDAS patients

22q11.2 microdeletion syndrome
(models of DGS)

Brain of the LgDel 22q11DS mouse
model (@ model of DGS)

Rett syndrome (RS)

Angelman syndrome (AS) Mouse embryonic fibroblasts from

Ube3a” mice

Hippocampus of Ube3a m-\p+ mice (a

model of AS)

Cornelia de Lange syndrome
(CdLS)

A CdLS patient
Skin fibroblasts of the CdLS patient

Smith-Lemli-Opitz syndrome
(SLOS)

Skin fibroblasts of SLOS patients
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Brain of Fmr1 KO mice (a model of the

Human fibroblasts and mice with the

Brain of Mecp2 KO mice (a model of RS)

Mitochondrial abnormalities in the genetic syndromes associated with ASD.

Mitochondrial abnormality References
* Elevated levels of ROS in [333]
* Increased activity of NADPH oxidase [333]
« Reduced levels of the mitochondrial fusion [334]
proteins MFN1, MFN2, and OPA1 [335]
* Reduced ATP production [336]
* Decreased ETC activity at complexes | and Il [336]
* Opening of the mPTP
« Disruption of the mitochondrial ETC activity at [339]
complexes | and IV
* Reduced mitochondrial respiration [344]
« Elevated levels of ROS and decreased [359]
expression of the SLC25A1 and SLC25A4 [360]
mitochondrial transporters [361]
* Impaired mitochondrial and synaptic
morphological integrity and increased ROS
production
« Mitochondrial Ca®" deregulation in brain of a
229g11DS mouse model
« Elongated mitochondria [365]
» Abnormal mitochondrial morphology [365]
« Increased level of oxidative stress [187, 367-369]
« Altered gene expression profiles of pathways [381]
related to mitochondrial functions [382]
* Small, dense mitochondria with altered [383, 384]
cristae; reduced activity of complex lll of the
ETC
* Increased levels of mitochondrial ROS
» A homozygous mutation in MRPS22 gene [392]
encoding a mitochondrial ribosomal small [392]
subunit protein.
» Reduced activities of complexes |, lll, and IV of
ETC
» Accumulation of dysfunctional mitochondria [397]
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brain development and cause behavioral deficits. In reality, the
role of these organelles in autism is hard to overestimate. The fact
that mitochondria are essential for various cellular functions but
can be affected by different pathogenic factors may explain the
similarity of the behavioral phenotype in ASD cases of different
origins. Along with mitochondria, synapses are considered end
effectors of many molecular mechanisms related to ASD, and the
convergence of different neurodevelopmental pathological
mechanisms on synapses can at least partially explain the
behavioral similarities in different individuals on the spectrum.
Meanwhile, as we discussed in this review, synaptic pathology is
closely related to mitochondrial dysfunction in ASD. Therefore,
mitochondria-associated synaptic abnormalities are likely to
contain robust therapeutic targets for ASD that have yet to be
discovered. There is still a vast number of “blank spots” in the
mechanisms of mitochondria-related autism. Uncovering these
spots may lead to the development of novel effective treatments
for ASD. This is an important task in light of the ever-growing
prevalence of this disorder while no effective pharmacological
treatment has been found so far.
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